18.已知關(guān)于x的不等式ax2+bx+3>0的解集為(-1,3).
(1)求實(shí)數(shù)a,b的值;
(2)解不等式x2+a|x-2|-8<0.

分析 (1)根據(jù)韋達(dá)定理即可求出a,b的值,
(2)需要分類討論,分a≥2或a<2時(shí),去絕對(duì)值,解不等式即可.

解答 解:(1)x的不等式ax2+bx+3>0的解集為(-1,3).
故-1和3是方程ax2+bx+3=0的兩個(gè)根,
∴-1+3=-$\frac{a}$,-1×3=$\frac{3}{a}$,
∴a=-1,b=2,
(2)由(1)可知a=-1,則x2+a|x-2|-8<0即為x2-|x-2|-8<0
當(dāng)x≥2時(shí),x2-x-6<0,即(x-3)(x+2)<0,解得2≤x<3,
當(dāng)x<2時(shí),x2+x-10<0,解得$\frac{-1-\sqrt{41}}{2}$<x<2,
綜上所述:不等式的解集為{x|$\frac{-1-\sqrt{41}}{2}$<x<3}.

點(diǎn)評(píng) 本題主要考查一元二次方程的根與系數(shù)的關(guān)系,一元二次不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.定義域?yàn)閇-1,1]上的奇函數(shù)f(x)滿足f(x)=f(x-2),且當(dāng)x∈(0,1)時(shí),f(x)=$\frac{a^x}{a^{2x}+1}$(a>1).
(1)求f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,a,b,c是角A、B、C的對(duì)邊,且b=2asinB,A為銳角.
(1)求角A的大。
(2)若b=1,c=2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=ax+lnx-$\frac{{x}^{2}}{x-lnx}$有三個(gè)不同的零點(diǎn)x1,x2,x3(其中x1<x2<x3),則(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)的值為( 。
A.1-aB.a-1C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線(a-1)x-y+a=1(a∈R)圓x+y2+2x+4y-20=0的位置關(guān)系是( 。
A.相交B.相切C.相離D.與a的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.根據(jù)已知函數(shù)y=x2-2x-3的圖象,試作出下列各函數(shù)的圖象:
(1)函數(shù)y=-x2+2x+3;
(2)向左平移2個(gè)單位;
(3)向上平移2個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知cos(θ+$\frac{π}{6}$)=$-\frac{\sqrt{3}}{3}$,則sin($\frac{π}{6}$-2θ)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若z1=sin2θ+icosθ,z2=cosθ+i$\sqrt{3}$sinθ,當(dāng)θ=$\frac{π}{6}+2kπ,k∈Z$時(shí),z1=z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若動(dòng)點(diǎn)M(x,y)始終滿足關(guān)系式$\sqrt{{x}^{2}+(y+2)^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=8,則動(dòng)點(diǎn)N的軌跡方程為( 。
A.$\frac{x^2}{16}+\frac{y^2}{12}$=1B.$\frac{x^2}{12}+\frac{y^2}{16}$=1C.$\frac{x^2}{12}-\frac{y^2}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案