分析 (1)由于函數(shù)f(x)=x3+ax2+bx+c在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,所以f(1)=4,f′(1)=3,又因?yàn)閥=f(x)在x=-2時有極值,所以f′(-2)=0,列三個方程解之即可
(2)由于函數(shù)f(x)=x3+ax2+bx+c在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,所以 f′(1)=3,所以2a=-b,欲使函數(shù)y=f(x)在區(qū)間(1,+∞)上單調(diào)遞增,只需f′(x)=3x2-bx+b≥0在區(qū)間(1,+∞)上恒成立,轉(zhuǎn)化為b≥$\frac{3{x}^{2}}{x-1}$在區(qū)間(1,+∞)上恒成立,利用函數(shù)性質(zhì)求此函數(shù)的最大值即可
解答 解:(1)∵f′(x)=3x2+2ax+b,
依題意$\left\{\begin{array}{l}{f′(1)=3+2a+b=3}\\{f(1)=1+a+b+c=4}\\{f′(-2)=14-4a+b=0}\end{array}\right.$,
解得a=2,b=-4,c=5,
∴f(x)=x3+2x2-4x+5;
(2)∵函數(shù)f(x)=x3+ax2+bx+c在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,
∴f′(1)=3,∴2a=-b
∴f′(x)=3x2-bx+b
依題意欲使函數(shù)y=f(x)在區(qū)間(1,+∞)上單調(diào)遞增,只需f′(x)=3x2-bx+b≥0在區(qū)間(1,+∞)上恒成立
即b≥$\frac{3{x}^{2}}{x-1}$在區(qū)間(1,+∞)上恒成立
設(shè)t=x-1(t>0),則$\frac{3{x}^{2}}{x-1}$=$\frac{3(t+1)^{2}}{t}$=3(t+$\frac{1}{t}$+2)≥12,當(dāng)且僅當(dāng)t=1,x=2時取等號
∴b≥12時,函數(shù)y=f(x)在區(qū)間(1,+∞)上單調(diào)遞增
點(diǎn)評 本題考察了導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)求函數(shù)極值,利用導(dǎo)數(shù)解決已知函數(shù)單調(diào)性求參數(shù)范圍問題的方法,考查了轉(zhuǎn)化化歸的思想方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 1 | C. | $\frac{{2\sqrt{10}}}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不全相等 | B. | 都相等 | C. | 均不相等 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3•2n-4 | B. | 3•2n-3 | C. | 3•2n-2 | D. | 3•2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x(元) | 14 | 16 | 18 | 20 | 22 |
Y(件) | 12 | 10 | 7 | 53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com