【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=16cosθ.
(1)把曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的直角坐標(biāo).
【答案】(1)x2+y2=16x(2)
【解析】
(1)首先利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
(2)利用曲線間的位置關(guān)系式的應(yīng)用求出交點(diǎn)的坐標(biāo).
(1)由ρ=16cosθ得,ρ2=16ρcosθ.
曲線C2的直角坐標(biāo)方程為x2+y2=16x.
(2)由即得,,.
相乘得,曲線C1的直角坐標(biāo)方程為4x2﹣y2=16.
由得,5x2﹣16x﹣16=0.
解得x=4或.
x=4時(shí),y2=48,;時(shí),無(wú)實(shí)數(shù)解.
所以,C1與C2交點(diǎn)的直角坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中,分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若平面,,
,求平面與平面所成角(銳角)的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PB⊥平面ABCD,AB⊥BC,AD∥BC,AD=2BC=2,AB=BC=PB,點(diǎn)E為棱PD的中點(diǎn).
(1)求證:CE∥平面PAB;
(2)求證:AD⊥平面PAB;
(3)求二面角E﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:
(1)某學(xué)校從編號(hào)依次為001,002,…,900的900個(gè)學(xué)生中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中有兩個(gè)相鄰的編號(hào)分別為053,098,則樣本中最大的編號(hào)為862.
(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.
(3)若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1.
(4)對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為30.
則正確的個(gè)數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程有實(shí)數(shù)根,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí)是否存在不動(dòng)點(diǎn)?并證明你的結(jié)論;
(2)若,求證有唯一不動(dòng)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來(lái),在世界各地逐漸蔓延.在全國(guó)人民的共同努力和各級(jí)部門的嚴(yán)格管控下,我國(guó)的疫情已經(jīng)得到了很好的控制.然而,每個(gè)國(guó)家在疫情發(fā)生初期,由于認(rèn)識(shí)不足和措施不到位,感染確診人數(shù)都會(huì)出現(xiàn)加速增長(zhǎng).如表是小王同學(xué)記錄的某國(guó)從第一例新型冠狀病毒感染確診之日開(kāi)始,連續(xù)8天每日新型冠狀病毒感染確診的累計(jì)人數(shù).
日期代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累計(jì)確診人數(shù) | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
為了分析該國(guó)累計(jì)感染確診人數(shù)的變化趨勢(shì),小王同學(xué)分別用兩種模型:
①,②對(duì)變量和的關(guān)系進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差,且經(jīng)過(guò)計(jì)算得,,其中,,
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由;
(2)根據(jù)(1)中選定的模型求出相應(yīng)的回歸方程;
(3)如果第9天該國(guó)仍未采取有效的防疫措施,試根據(jù)(2)中所求的回歸方程估計(jì)該國(guó)第9天新型冠狀病毒感染確診的累計(jì)人數(shù).(結(jié)果保留為整數(shù))
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,錯(cuò)誤命題是
A. “若,則”的逆命題為真
B. 線性回歸直線必過(guò)樣本點(diǎn)的中心
C. 在平面直角坐標(biāo)系中到點(diǎn)和的距離的和為的點(diǎn)的軌跡為橢圓
D. 在銳角中,有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】向50名學(xué)生調(diào)查對(duì)A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對(duì)A、B都不贊成的學(xué)生數(shù)比對(duì)A、B都贊成的學(xué)生數(shù)的三分之一多1人. 問(wèn)對(duì)A、B都贊成的學(xué)生有____________人
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com