【題目】已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ16cosθ.

1)把曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程;

2)求C1C2交點(diǎn)的直角坐標(biāo).

【答案】1x2+y216x2

【解析】

1)首先利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

2)利用曲線間的位置關(guān)系式的應(yīng)用求出交點(diǎn)的坐標(biāo).

1)由ρ16cosθ得,ρ216ρcosθ.

曲線C2的直角坐標(biāo)方程為x2+y216x.

2)由得,,.

相乘得,曲線C1的直角坐標(biāo)方程為4x2y216.

得,5x216x160.

解得x4.

x4時(shí),y248,時(shí),無(wú)實(shí)數(shù)解.

所以,C1C2交點(diǎn)的直角坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中,分別為的中點(diǎn).

)求證:平面

)若平面,,

,求平面與平面所成角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PB⊥平面ABCD,ABBC,ADBC,AD2BC2ABBCPB,點(diǎn)E為棱PD的中點(diǎn).

1)求證:CE∥平面PAB

2)求證:AD⊥平面PAB;

3)求二面角EACD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列結(jié)論

(1)某學(xué)校從編號(hào)依次為001,002,…,900的900個(gè)學(xué)生中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中有兩個(gè)相鄰的編號(hào)分別為053,098,則樣本中最大的編號(hào)為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1.

(4)對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為30.

則正確的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程有實(shí)數(shù)根,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí)是否存在不動(dòng)點(diǎn)?并證明你的結(jié)論;

2)若,求證有唯一不動(dòng)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來(lái),在世界各地逐漸蔓延.在全國(guó)人民的共同努力和各級(jí)部門的嚴(yán)格管控下,我國(guó)的疫情已經(jīng)得到了很好的控制.然而,每個(gè)國(guó)家在疫情發(fā)生初期,由于認(rèn)識(shí)不足和措施不到位,感染確診人數(shù)都會(huì)出現(xiàn)加速增長(zhǎng).如表是小王同學(xué)記錄的某國(guó)從第一例新型冠狀病毒感染確診之日開(kāi)始,連續(xù)8天每日新型冠狀病毒感染確診的累計(jì)人數(shù).

日期代碼

1

2

3

4

5

6

7

8

累計(jì)確診人數(shù)

4

8

16

31

51

71

97

122

為了分析該國(guó)累計(jì)感染確診人數(shù)的變化趨勢(shì),小王同學(xué)分別用兩種模型:

,②對(duì)變量的關(guān)系進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差,且經(jīng)過(guò)計(jì)算得,其中,,

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由;

2)根據(jù)(1)中選定的模型求出相應(yīng)的回歸方程;

3)如果第9天該國(guó)仍未采取有效的防疫措施,試根據(jù)(2)中所求的回歸方程估計(jì)該國(guó)第9天新型冠狀病毒感染確診的累計(jì)人數(shù).(結(jié)果保留為整數(shù))

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,錯(cuò)誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過(guò)樣本點(diǎn)的中心

C. 在平面直角坐標(biāo)系中到點(diǎn)的距離的和為的點(diǎn)的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】50名學(xué)生調(diào)查對(duì)A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對(duì)A、B都不贊成的學(xué)生數(shù)比對(duì)A、B都贊成的學(xué)生數(shù)的三分之一多1. 問(wèn)對(duì)A、B都贊成的學(xué)生有____________

查看答案和解析>>

同步練習(xí)冊(cè)答案