7.已知a>0且a≠1,設(shè)p:函數(shù)y=loga(x+1)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點,如果“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

分析 由“函數(shù)y=loga(x+1)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減”,可知p:0<a<1.由“曲線y=x2+(2a-3)x+1與x軸交于不同的兩點”,可得△>0.因為“p∨q”為真命題,“p∧q”為假命題,所以p與q恰好一真一假,即可得出.

解答 解:由“函數(shù)y=loga(x+1)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減”,
可知p:0<a<1,
由“曲線y=x2+(2a-3)x+1與x軸交于不同的兩點”,∴△=(2a-3)2-4>0,a>0,a≠1.
可知$q:a>\frac{5}{2}$或$0<a<\frac{1}{2}$,
因為“p∨q”為真命題,“p∧q”為假命題,
所以p與q恰好一真一假,
當p真,q假時,$a∈({0,1})∩[{\frac{1}{2},\frac{5}{2}}]$,即$a∈[{\frac{1}{2},1})$.
當p假,q真時,$a∈({1,+∞})∩({({0,\frac{1}{2}})∪({\frac{5}{2},+∞})})$,即$a∈({\frac{5}{2},+∞})$.
綜上可知,a的取值范圍為:$[{\frac{1}{2},1})∪({\frac{5}{2},+∞})$.

點評 本題考查了函數(shù)的性質(zhì)、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={-2,-1,0,1,2,3},集合B={x|-2≤x<2},則集合A∩B=( 。
A.{x|-2≤x<2}B.{x|-2≤x≤1}C.{-2,-1,0,1,2}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x),定義$F(f(x))=\left\{\begin{array}{l}1,x<f(x)\\ 0,x=f(x)\\-1,x>f(x).\end{array}\right.$
(Ⅰ)寫出函數(shù)F(2x-1)的解析式;
(Ⅱ)若F(|x-a|)+F(2x-1)=0,求實數(shù)a的值;
(Ⅲ)當$x∈[\frac{π}{3},\frac{4}{3}π]$時,求h(x)=cosx•F(x+sinx)的零點個數(shù)和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y≤1\\ 2x+y≤5\\ x≥1\end{array}\right.$,則z=3x+y的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中為奇函數(shù)的是( 。
A.y=xcosxB.y=xsinxC.y=|1nx|D.y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)=( 。
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.二手車經(jīng)銷商小王對其所經(jīng)營的A型號二手汽車的使用年數(shù)x與銷售價格y(單位:萬元/輛)進行整理,得到如下數(shù)據(jù):
使用年數(shù)x234567
售價y201286.44.43
z=lny3.002.482.081.861.481.10
下面是z關(guān)于x的折線圖:

(1)由折線圖可以看出,可以用線性回歸模型擬合z與x的關(guān)系,請用相關(guān)數(shù)加以說明;
(2)求y關(guān)于x的回歸方程并預(yù)測某輛A型號二手車當使用年數(shù)為9年時售價約為多少?($\widehat$、$\widehat{a}$小數(shù)點后保留兩位有效數(shù)字).
(3)基于成本的考慮,該型號二手車的售價不得低于7118元,請根據(jù)(2)求出的回歸方程預(yù)測在收購該型號二手車時車輛的使用年數(shù)不得超過多少年?
參考公式:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$.
參考數(shù)據(jù):
$\sum_{i=1}^{6}{x}_{i}{y}_{i}$=187.4,$\sum_{i=1}^{6}{x}_{i}{z}_{i}$=47.64,$\sum_{i=1}^{6}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}}$=13.96,
$\sqrt{\sum_{i=1}^{6}({z}_{i}-\overline{z})^{2}}$=1.53,ln1.46≈0.38,ln0.7118≈-0.34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=x2-2x+m,在x∈[0,3]上的最大值為1,則實數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}-\frac{2}{a_n}=0$,則稱{an}為“夢想數(shù)列”,已知正項數(shù)列$\{\frac{1}{b_n}\}$為“夢想數(shù)列”,且b1+b2+b3=2,則b6+b7+b8=( 。
A.4B.16C.32D.64

查看答案和解析>>

同步練習(xí)冊答案