20.已知圓C的方程為:x2+y2-2mx-2y+4m-4=0,(m∈R).
(1)試求m的值,使圓C的面積最小,并寫(xiě)出此時(shí)圓C的方程;
(2)求與(1)中所求的圓C相切,且過(guò)點(diǎn)(1,-2)的直線l的方程.

分析 (1)通過(guò)配方先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用二次函數(shù)的最值,可得m的值,并寫(xiě)出此時(shí)圓C的方程;
(2)根據(jù)(1)的結(jié)論確定圓的方程,然后設(shè)出直線方程,利用直線與圓相切的條件,建立關(guān)系,求得直線方程.

解答 解:配方得圓的方程:(x-m)2+(y-1)2=(m-2)2+1
(1)當(dāng)m=2時(shí),圓的半徑有最小值1,此時(shí)圓的面積最;圓的方程為(x-2)2+(y-1)2=1.
(2)當(dāng)m=2時(shí),圓的方程為(x-2)2+(y-1)2=1
設(shè)所求的直線方程為y+2=k(x-1),即kx-y-k-2=0
由直線與圓相切,得$\frac{|2k-1-k-2|}{\sqrt{{k}^{2}+1}}$=1,∴k=$\frac{4}{3}$.
所以切線方程為y+2=$\frac{4}{3}$(x-1),即4x-3y-10=0
又過(guò)點(diǎn)(1,-2)且與x軸垂直的直線x=1與圓也相切
∴所求的切線方程為x=1與4x-3y-10=0.

點(diǎn)評(píng) 本題考查了圓的方程以及直線與圓的位置關(guān)系,同時(shí)考查了二次函數(shù)的最值問(wèn)題,在求直線方程時(shí)注意考慮斜率不存在的情況,是個(gè)中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若sin2xsin3x=cos2xcos3x,則x的值是(  )
A.$\frac{π}{10}$B.$\frac{π}{6}$C.$\frac{π}{5}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知∠α的終邊落在陰影所表示的范圍內(nèi)(包括邊界),則∠α的集合為{α|-45°+k•360°≤α≤k•360°或90°+k•360°≤α≤135°+k•360°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)學(xué)生通過(guò)某種英語(yǔ)聽(tīng)力測(cè)試的概率是$\frac{1}{2}$,他連續(xù)測(cè)試2次,那么其中恰有1次獲得通過(guò)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如果關(guān)于x的不等式$a≤\frac{5}{9}{x^2}-\frac{10}{3}x+6≤b$的解集是[x1,x2]∪[x3,x4],x1<x2<x3<x4,則$\sum_{i=1}^4{x_i}$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若不等式ax2-x+c>0的解為{x|-1<x<$\frac{2}{3}$},則a+c=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)集合A={x∈N|$\frac{6}{3-x}$∈Z},B={(x,y)|x+y=3,x∈N,y∈N},則用列舉法表示A={0,1,2,4,5,6,9},B={(0,3),(1,2),(2,1),(3,0)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)b=1時(shí),對(duì)于任意的x1,x2∈[1,+∞),且x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

同步練習(xí)冊(cè)答案