如圖所示,已知PA⊥⊙O所在平面,AB是⊙O的直徑,點C是⊙O上任意一點,過A作AE⊥PC于點E,AF⊥PB于點F,求證:
(1)AE⊥平面PBC;
(2)平面PAC⊥平面PBC;
(3)PB⊥EF.
考點:平面與平面垂直的判定,直線與平面垂直的判定
專題:綜合題,空間位置關系與距離
分析:(1)根據(jù)底面是圓,得到BC⊥AC,再根據(jù)PA⊥平面ABC得到PA⊥BC,最后綜合即可證明AE⊥平面PBC;
(2)利用面面垂直的判定定理,即可證明平面PAC⊥平面PBC;
(3)證明PB⊥平面AEF,即可證明PB⊥EF.
解答: 證明:(1)因為AB是⊙O的直徑,
所以∠ACB=90°,即AC⊥BC.
又因為PA⊥⊙O所在平面,即PA⊥平面ABC.
又BC?平面ABC,所以BC⊥PA.
又因為AC∩PA=A,所以BC⊥平面PAC.
因為AE?平面PAC,所以BC⊥AE.
又已知AE⊥PC,PC∩BC=C,
所以AE⊥平面PBC.
(2)因為AE⊥平面PBC,且AE?平面PAC,
所以平面PAC⊥平面PBC.
(3)因為AE⊥平面PBC,且PB?平面PBC,
所以AE⊥PB.
又AF⊥PB于點F,且AF∩AE=A,
所以PB⊥平面AEF.
又因為EF?平面AEF,所以PB⊥EF.
點評:本題考查的知識點是平面與平面垂直的判定,直線與平面垂直的性質(zhì),其中熟練掌握空間線面垂直、面面垂直、線線垂直之間關系的轉(zhuǎn)化是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
4x
3x2+3
(x∈(0,2)),g(x)=
1
2
x2-lnx-a

(1)求f(x)的值域;
(2)若?x∈[1,2]使得g(x)=0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校新生入學時該校選取甲、乙兩個高一新班(均為60人,入學數(shù)學平均分和優(yōu)秀率都相同,勤奮程度和自覺性都一樣)分別采用A,B兩種方法教學,為了解A,B兩種教學方法的效果,現(xiàn)隨機抽取甲、乙兩班各20名學生的市統(tǒng)考數(shù)學成績(單位:分)如下:
甲班:58,57,59,92,71,82,65,82,74,67,74,67,68,85,83,78,81,69,73;
乙班:64,73,80,81,90,82,84,91,69,78,83,89,97,94,68,82,69,76,81,98.
(1)分別完成甲、乙兩班各20名學生的市統(tǒng)考數(shù)學成績的頻率分布表,并作出頻率分布直方圖,根據(jù)頻率分布直方圖判斷哪個班的優(yōu)秀率高?(成績大于等于80分為優(yōu)秀)
甲班
分組頻數(shù)頻率
[90,100]
 
 
[80,90)
 
 
[70,80)
 
 
[60,70)
 
 
[50,60)
 
 
乙班
分組頻數(shù)頻率
[90,100]
 
 
[80,90)
 
 
[70,80)
 
 
[60,70)
 
 
[50,60)
 
 

(2)現(xiàn)從甲、乙兩班各20名市統(tǒng)考數(shù)學成績不低于85分的學生中各抽出2人,若成績不低于90分的學生獎勵100元,否則獎勵50元,求獎金總數(shù)不少于310元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(
x
2
+
π
4
)cos(
x
2
-
π
4
)-sin2
x
2
,先將f(x)的圖象向右平移
π
4
個單位,再將所得圖象上的所有點的橫坐標縮短到原來的
1
2
,縱坐標伸長到原來的
2
倍,得到g(x)的圖象.
(1)求f(x)的最小正周期;
(2)若x∈[0,
π
4
],求f(x)的值域;
(3)若F(x)=2af(x)+
a
2
g(x)+1,x∈[0,
π
4
],a≠0,試求F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點,PA=AD.求證:
(1)CD⊥PD;
(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且acosC,bcosB,ccosA成等差數(shù)列.
(Ⅰ)求B;
(Ⅱ)若b=7,△ABC的面積為10
3
,求sinA+sinC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AA1⊥底面ABCD,AB=2
2
,AA1=4,E為AA1上一點,且A1E=3EA.
(Ⅰ)求證:平面EBD⊥平面C1BD;
(Ⅱ)求四棱錐E-ABCD與四棱錐C1-ABCD公共部分的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且AD=
2
PA=
2
PD.
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求四棱錐P-ABCD的體積VP-ABCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x-1和圓C:x2+y2-6x+4y+4=0交于M,N兩點.
(Ⅰ)求|MN|;
(Ⅱ)求以線段MN為直徑的圓P的方程.

查看答案和解析>>

同步練習冊答案