20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)過(guò)點(diǎn)A(1,0),且離心率為$\sqrt{3}$
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

分析 (1)依題意$e=\sqrt{3},a=1$,故$c=\sqrt{3}$,所以b2=2,由此能求出雙曲線方程.
(2)由$\left\{\begin{array}{l}{x^2}-\frac{y^2}{2}=1\\ x-y+m=0\end{array}\right.$,得x2-2mx-m2-2=0,故$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=2m}\\{{x}_{1}{x}_{2}=-{m}^{2}-2}\end{array}\right.$,中點(diǎn)在直線x-y+m=0上,所以可得中點(diǎn)坐標(biāo)為(m,2m),由此能求出m的值.

解答 解:(1)∵雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)過(guò)點(diǎn)A(1,0),
∴a=1,
∵雙曲線的離心率為$\sqrt{3}$
∴e=$\frac{c}{a}$=$\sqrt{3}$,則c=$\sqrt{3}$,
則b2=c2-a2=3-1=2,
則雙曲線C的方程為x2-$\frac{{y}^{2}}{2}$=1;
(2)由$\left\{\begin{array}{l}{x^2}-\frac{y^2}{2}=1\\ x-y+m=0\end{array}\right.$,
得x2-2mx-m2-2=0,
∴$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=2m}\\{{x}_{1}{x}_{2}=-{m}^{2}-2}\end{array}\right.$,
又∵中點(diǎn)在直線x-y+m=0上,
所以中點(diǎn)坐標(biāo)為(m,2m),
代入x2+y2=5得m=±1滿足判別式△>0.

點(diǎn)評(píng) 本題考查雙曲線方程的求法,以及直線和雙曲線相交的性質(zhì),根據(jù)條件建立方程求出a,b的值是解決本題的關(guān)鍵,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)條件中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.復(fù)數(shù)z滿足z=$\frac{3-2i}{1-i}$(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)f(x)=x2+ax+3在(-∞,1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]B.[1,+∞)C.(-∞,-2]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.三棱錐P-ABC中,△ABC為正三角形且邊長(zhǎng)為$\sqrt{3}$,平面PAB⊥平面ABC,PA⊥PB,則三棱錐P-ABC的外接球的表面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的外接球半徑為( 。
A.$\frac{15}{2}$cmB.$\frac{15}{4}$cmC.$\frac{5\sqrt{41}}{2}$cmD.$\frac{5\sqrt{41}}{4}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知過(guò)點(diǎn)A(-2,m)和B(m,4)的直線與直線2x+y+1=0平行,則m的值為(  )
A.8B.-8C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上的雙曲線經(jīng)過(guò)點(diǎn)P(4,2),△PF1F2的內(nèi)切圓與x軸相切于點(diǎn)Q(2$\sqrt{2}$,0),則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.(1)若p:?x∈R,x2+x+1<0,則非p:?x∈R,x2+x+1<0
(2)若p∨q為真命題,則p∧q也為真命題
(3)“函數(shù)f(x)為奇函數(shù)”是“f(0)=0”的既不充分也不必要條件
(4)命題“若x2-3x+2=0,則x=1”的否命題為真命題
(5)若(a+1)${\;}^{\frac{1}{2}}$<(3-2a)${\;}^{\frac{1}{2}}$,則a的取值范圍是a<$\frac{2}{3}$
以上命題正確的是(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果等腰三角形的頂角的余弦值為$\frac{3}{5}$,則底邊上的高與底邊的比值為( 。
A.$\frac{1}{2}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案