A. | $\frac{\sqrt{2}-1}{2}$ | B. | -$\frac{\sqrt{2}+1}{2}$ | C. | -1 | D. | $\frac{1-\sqrt{2}}{2}$ |
分析 將解析式化簡(jiǎn)為關(guān)于cosx的二次函數(shù)形式,然后結(jié)合二次函數(shù)閉區(qū)間上的最值求法解答
解答 解:因?yàn)閒(x)=sin2x+cosx=1-cos2x+cosx,
設(shè)t=cosx,因?yàn)閤∈[$\frac{π}{4}$,$\frac{3π}{4}$],所以t∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
所以函數(shù)y=-t2+t+1=-(t-$\frac{1}{2}$)2+$\frac{5}{4}$在[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]先增后減,
且它的最小值為t=-$\frac{\sqrt{2}}{2}$時(shí)的函數(shù)值,是ymin=$\frac{1-\sqrt{2}}{2}$;
即f(x)的最小值為$\frac{1-\sqrt{2}}{2}$.
故選:D.
點(diǎn)評(píng) 本題考查了三角函數(shù)與二次函數(shù)相結(jié)合的函數(shù)最值的求法;本題關(guān)鍵是利用換元將解析式轉(zhuǎn)化為二次函數(shù)的解析式,注意新元的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | α<∠A′CA | B. | α>∠A′CA | C. | α<∠A′CD | D. | α>∠A′CD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,1) | B. | [0,1) | C. | (1,2] | D. | (-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com