19.水平放置的△ABC,有一邊在水平線上,用斜二測畫法作出的直觀圖是正三角形A′B′C′,則△ABC是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.任意三角形

分析 根據(jù)斜二測畫法作平面圖形直觀圖的原理,可得△ABC中有一角為鈍角,△ABC是鈍角三角形.

解答 解:水平放置的△ABC,有一邊在水平線上,用斜二測畫法作出的直觀圖是正三角形A′B′C′,
根據(jù)斜二測畫法作平面圖形的直觀圖原理,得△ABC中有一角為鈍角,是鈍角三角形.
故選:B.

點評 本題考查了斜二測畫法作平面圖形的直觀圖和原三角形形狀的判斷等知識,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知正項數(shù)列{an}的前n項和為Sn,且Sn=$\frac{{a}_{n}^{2}+3{a}_{n}+2}{6}$.
(1)求數(shù)列{an}的通項公式;
(2)若a2=4a1,bn=$\frac{3}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn<$\frac{15}{16}$時自然數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若cos2θ+cosθ=0,則sin2θ+sinθ的值等于( 。
A.0B.±$\sqrt{3}$C.0或$\sqrt{3}$D.0或±$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個三棱錐的三視圖如圖所示,則該三棱錐的表面積為( 。
A.8+$\sqrt{14}$B.8+2$\sqrt{14}$C.2+2$\sqrt{5}$+$\sqrt{14}$D.16+2$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.購買某種汽車的費用為15萬元,每年應(yīng)交保險費,養(yǎng)路費及汽油費合計為1萬元,汽車的年平均維修費如下:第1年4千元,第2年7千元,第3年1萬元,依次成等差數(shù)列逐年遞增,
(1)求這種汽車使用n年的年平均費用y與n的函數(shù)關(guān)系式;
(2)問使用多少年報廢最合算(即使用多少年年平均費用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓C:(x-2)2+y2=4,線段EF在直線l:y=x+1上運動,點P為線段EF上任意一點,若圓C上存在兩點A、B,使得∠APB≥120°,則線段EF長度的最大值是$\frac{\sqrt{30}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=e1-x+lnx-x2
(I)若f(x)的定義域為($\frac{1}{2}$,+∞),解不等式f(x)≥0;
(Ⅱ)證明:f(x)在區(qū)間(0,$\frac{1}{2}$)上有唯一極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和Sn=2an-2n+1
(Ⅰ)證明:數(shù)列{${\frac{a_n}{2^n}$}是等差數(shù)列;
(Ⅱ)數(shù)列{bn}滿足bn=$\frac{n}{{(n+1)•{2^{2n-1}}}}•{a_n}$,數(shù)列{bn}的前n項和為Tn,若不等式(-1)nλ<Tn+$\frac{n}{{{2^{n-1}}}}$對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知復(fù)數(shù)z=(a2-7a+6)+(a2-5a-6)i(a∈R)
(1)若復(fù)數(shù)z為純虛數(shù),求實數(shù)a的值;
(2)若復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點在第四象限,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案