精英家教網 > 高中數學 > 題目詳情

【題目】某中學高中畢業(yè)班的三名同學甲、乙、丙參加某大學的自主招生考核,在本次考核中只有合格和優(yōu)秀兩個等次.若考核為合格,則給予分的降分資格;若考核為優(yōu)秀,則給予分的降分資格.假設甲、乙、丙考核為優(yōu)秀的概率分別為、,他們考核所得的等次相互獨立.

1)求在這次考核中,甲、乙、丙三名同學中至少有一名考核為優(yōu)秀的概率;

2)記在這次考核中,甲、乙、丙三名同學所得降分之和為隨機變量,請寫出所有可能的取值,并求的值.

【答案】1;(2所有可能的取值為、、、,.

【解析】

1)計算出三名同學考核均為合格的概率,利用對立事件的概率公式可計算出所求事件的概率;

2)根據題意得出所有可能的取值為、、,利用相互獨立事件概率乘法公式和互斥事件概率計算公式能求出

1)由題意知,三名同學考核均為合格的概率為,

因此,甲、乙、丙三名同學中至少有一名考核為優(yōu)秀的概率為

2)由題意知,隨機變量的所有可能取值有、、、

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓的離心率為,左焦點為,過點且斜率為的直線交橢圓于兩點.

1)求橢圓的方程;

2)求的取值范圍;

3)在軸上,是否存在定點,使恒為定值?若存在,求出點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年國際籃聯(lián)籃球世界杯,將于2019年在北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學從全校學生中隨機抽取了120名學生,對是否收看籃球世界杯賽事的情況進行了問卷調查,統(tǒng)計數據如下:

1)根據上表說明,能否有的把握認為收看籃球世界杯賽事與性別有關?

2)現(xiàn)從參與問卷調查的120名學生中,采用按性別分層抽樣的方法選取6人參加2019年國際籃聯(lián)籃球世界杯賽志愿者宣傳活動.

i)求男、女學生各選取多少人;

ii)若從這6人中隨機選取3人到校廣播站開展2019年國際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到2名男生的概率.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

在極坐標系中,為極點,點,點.

(1)以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,求經過,三點的圓的直角坐標方程;

(2)在(1)的條件下,圓的極坐標方程為,若圓與圓相切,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的多面體是由一個直平行六面體被平面所截后得到的,其中,,.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高二某班名同學期末考完試后,商量購買一些學習參考書準備在高三時使用,大家約定:每個人通過擲一枚質地均勻的骰子決定自己去哪購買,擲出點數大于或等于的人去圖書批發(fā)市場購買,擲出點數小于的人去網上購買,且參加者必須從圖書批發(fā)市場和網上選擇一家購買.

1)求這人中至多有人去圖書批發(fā)市場購買的概率;

2)用、分別表示這人中去圖書批發(fā)市場和網上購買的人數,記,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段:,,,,,,后得到如圖的頻率分

布直方圖.

(1)求圖中實數的值;

(2)若該校高一年級共有學生1000人,試估計該校高一年級期中考試數學成績不低于60分的人數.

(3)若從樣本中數學成績在,,兩個分數段內的學生中隨機選取2名學生,試用列舉法求這2名學生的數學成績之差的絕對值大于10的槪率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】曲線的參數方程為(t為參數),以原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,曲線關于對稱.

(1)求極坐標方程,直角坐標方程;

(2)將向左平移4個單位長度,按照變換得到與兩坐標軸交于兩點,上任一點,求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

同步練習冊答案