精英家教網 > 高中數學 > 題目詳情
8.過雙曲線x2-$\frac{{y}^{2}}{3}$=1的左焦點F1作傾斜角為$\frac{π}{6}$的直線l交雙曲線于A、B兩點,求線段AB的中點M的坐標.

分析 先求出F1(-2,0),從而可以寫出直線l的方程為$y=\frac{\sqrt{3}}{3}(x+2)$,代入雙曲線方程便可得到8x2-4x-13=0,可設A(x1,y1),B(x2,y2),根據韋達定理便可得出x1+x2,進一步求出y1+y2,從而便可得出中點M的坐標.

解答 解:根據雙曲線方程,c=2;
∴F1(-2,0);
∴直線l的方程為$y=\frac{\sqrt{3}}{3}(x+2)$,代入雙曲線方程消去y得:8x2-4x-13=0;
設A(x1,y1),B(x2,y2),則:${x}_{1}+{x}_{2}=\frac{1}{2}$;
∴${y}_{1}+{y}_{2}=\frac{\sqrt{3}}{3}({x}_{1}+{x}_{2}+4)=\frac{3\sqrt{3}}{2}$;
∴線段AB的中點M的坐標為($\frac{1}{4},\frac{3\sqrt{3}}{4}$).

點評 考查雙曲線的標準方程,雙曲線的焦點,以及直線的點斜式方程,韋達定理,中點坐標公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.設數列{an}是前n項和Sn=$\frac{1}{2}$an-1(n∈N*).
(Ⅰ)求a1•a2;
(Ⅱ)求證:數列{an}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知等比數列{an}滿足27a2-a5=0,a1a2=a3
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=3log3an+3,求證:{bn}是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知正項等比數列{an}滿足:a8-a7-2a6=0,若存在兩項am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=4a2,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知數列{an}中an>0,其前n項和為Sn,且對任意的n∈N*,都有Sn=$\frac{1}{4}$(a${\;}_{n}^{2}$+2an+1),等比數列{bn}的通項公式為bn=3n
(1)求數列{an}的通項公式;
(2)求數列{(-1)nan+bn}的前n項和Tn;
(3)設cn=2${\;}^{1+{a}_{n}}$+(-1)nt•bn(t為非零整數,n∈N*),若對任意n∈N*,cn+1>cn恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知f(x)為二次函數,且滿足f(0)=1,f(x+1)-f(x-1)=4x.
(1)求f(2);
(2)求f(x)的解析式;
(3)判斷f(x)的奇偶性并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知直線11:ax+4y-2=0,l2:x+ay-1=0.若l1∥l2,則a=-2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.函數y=2cos(-4x+$\frac{π}{2}$)的最小正周期是( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.D.π

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知平行四邊形ABCD的三個頂點A(-3,0),B(2,-2),C(5,2),求頂點D的坐標.

查看答案和解析>>

同步練習冊答案