1.已知f(x)=$\sqrt{(a+2){x}^{2}+bx+a+2}$(a,b∈R)定義域為R,則3a+b的取值范圍為[-6,+∞).

分析 分類求解,當a+2=0時,求得b=0,得到3a+b=-6;當a+2≠0時,得到$\left\{\begin{array}{l}{a+2>0}\\{-2(a+2)≤b≤2(a+2)}\end{array}\right.$,利用線性規(guī)劃知識求出3a+b的取值范圍,取并集得答案.

解答 解:當a+2=0時,要使f(x)=$\sqrt{(a+2){x}^{2}+bx+a+2}$(a,b∈R)定義域為R,
則b=0,此時3a+b=-6;
當a+2≠0時,要使f(x)=$\sqrt{(a+2){x}^{2}+bx+a+2}$(a,b∈R)定義域為R,
則$\left\{\begin{array}{l}{a+2>0}\\{^{2}-4(a+2)^{2}≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{a+2>0}\\{-2(a+2)≤b≤2(a+2)}\end{array}\right.$.
作出可行域如圖,
令z=3a+b,
化為b=-3a+z,
由圖可知,當直線b=-3a+z過點(-2,0)時,直線在b軸上的截距最小,z有最小值為-6.
∴3a+b的取值范圍為[-6,+∞).
故答案為:[-6,+∞).

點評 本題考查函數(shù)的定義域及其求法,考查了簡單的線性規(guī)劃,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某小組共有13人,其中男生8人,女生5人,從中選出3人,要求至多有2名男生,則不同的選法共有( 。
A.140種B.150種C.220種D.230種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在等差數(shù)列{an}中,a1+a4+a7=27,a3+a6+a9=9,則a9=-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在三角形ABC中,角A、B、C所對的邊分別為a、b、c,且a=2,∠C=$\frac{π}{4}$,cosB=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.(1-$\frac{2}{{x}^{2}}$)(2+$\sqrt{x}$)6的展開式中,x項的系數(shù)是( 。
A.58B.62C.238D.242

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(x)=x+$\frac{4}{x}$,則下列結(jié)論正確的是( 。
A.f(x)的最小值為4
B.f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增
C.f(x)的最大值為4
D.f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在三棱錐A-BCD中,點A在BD上的射影為O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,AC=$\sqrt{6}$.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若E是AC的中點,求直線BE和平面BCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,四面體ABCD中,AB=DC=1,BD=$\sqrt{2}$,AD=BC=$\sqrt{3}$,二面角A-BD-C的平面角的大小為60°,E,F(xiàn)分別是BC,AD的中點,則異面直線EF與AC所成的角的余弦值是( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

同步練習冊答案