9.下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上為增函數(shù)的是( 。
A.y=xB.$y=\sqrt{x}$C.y=-x2D.y=lg|x|

分析 由函數(shù)單調(diào)性和奇偶性的性質(zhì)逐一核對四個函數(shù)得答案.

解答 解:函數(shù)y=x為奇函數(shù);函數(shù)$y=\sqrt{x}$的定義域為[0,+∞),函數(shù)是非奇非偶函數(shù);
函數(shù)y=-x2為偶函數(shù),在(0,+∞)上為減函數(shù);函數(shù)y=lg|x|的定義域為{x|x≠0},滿足lg|-x|=lg|x|,函數(shù)為偶函數(shù),且在(0,+∞)上為增函數(shù).
故選:D.

點評 本題考查基本初等函數(shù)的單調(diào)性和奇偶性,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)為R上的偶函數(shù).且對任意x∈R都有f(x+6)=f(x)+f(3),則f(2007)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在(3-x)5的展開式中,含x3的項的系數(shù)是-90(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)q(q>0,q≠1)是一個公比為q(q>0,q≠1)等比數(shù)列,4a1,3a2,2a3成等差數(shù)列,且它的前4項和s4=15.
(Ⅰ)求數(shù)列bn=$\frac{a_n}{n}$,(n=1,2,3…)的通項公式;
(Ⅱ)令bn=an+2n,(n=1,2,3…),求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}是等比數(shù)列,首項 a1=1,公比q≠0,其前n項和為Sn,且 S1+a1,S3+a3,S2+a2成等差數(shù)列
(1)求{an}通項公式
(2)若數(shù)列{ bn}滿足$a_{n+1}={(\frac{1}{2})}^{a_nb_n}$,求數(shù)列{bn}的前n項和 Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知角α的頂點在原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點(-3,4),則cosα=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an},a2=1,a4=3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=${2^{a_n}}$(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等比數(shù)列{an}的公比q>0,已知a2=1,a4=4,則{an}的公比q的值為( 。
A.-2B.1C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知矩形ABCD的周長為6,矩形繞它的邊AB旋轉(zhuǎn),形成圓柱,
(1)若AB=1,求圓柱的側(cè)面積;
(2)求AB,CD的長度分別為何值時,旋轉(zhuǎn)形成的圓柱側(cè)面積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案