【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2x a)的定義域?yàn)镽;命題q:不等式3x-9x<a對一切正實(shí)數(shù)均成立.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍( ).
A.0≤a<1
B.0≤a
C.a≤1
D.0≤a≤1

【答案】D
【解析】若命題p為真,即ax2x a>0恒成立,

令y=3x-9x=- ,
x>0得3x>1,
∴y=3x-9x的值域?yàn)?-∞,0).
∴若命題q為真,則a≥0.
由命題“p∨q”為真,“p∧q”為假,得命題p、q一真一假,當(dāng)p真q假時(shí),a不存在;當(dāng)p假q真時(shí),0≤a≤1.
∴a的取值范圍是0≤a≤1.故選D.
【考點(diǎn)精析】利用四種命題的真假關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知一個(gè)命題的真假與其他三個(gè)命題的真假有如下三條關(guān)系:(原命題 逆否命題)①、原命題為真,它的逆命題不一定為真;②、原命題為真,它的否命題不一定為真;③、原命題為真,它的逆否命題一定為真.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間(﹣1,1)上的偶函數(shù)f(x),在(0,1)上為增函數(shù),f(a﹣2)﹣f(4﹣a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線交于A、B兩點(diǎn),線段AB的垂直平分線與直線y=-5交于Q點(diǎn).

(1)求點(diǎn)Q的坐標(biāo);
(2)當(dāng)P為拋物線上位于線段AB下方(含A、B)的動(dòng)點(diǎn)時(shí),求ΔOPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

已知直線l:ρsin(θ+)=m,曲線C:

(1)當(dāng)m=3時(shí),判斷直線l與曲線C的位置關(guān)系;

(2)若曲線C上存在到直線l的距離等于的點(diǎn),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 C 的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在 X 軸上,橢圓 C 上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(1)求橢圓 C 的標(biāo)準(zhǔn)方程;
(2)若直線 與橢圓 C 相交于 A,B 兩點(diǎn)( A,B 不是左右頂點(diǎn)),且以 AB 為直徑的圖過橢圓 C 的右頂點(diǎn).求證:直線 l 過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假;寫出這些命題的否定并判斷真假.
(1)三角形的內(nèi)角和為180°;
(2)每個(gè)二次函數(shù)的圖象都開口向下;
(3)存在一個(gè)四邊形不是平行四邊形;
(4);
(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形的四個(gè)頂點(diǎn)都在橢圓上,若橢圓的焦點(diǎn)在正方形的內(nèi)部,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A′B′C′D′中,E是棱BC的中點(diǎn),G是棱DD′的中點(diǎn),則異面直線GB與B′E所成的角為(

A.120°
B.90°
C.60°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某高級中學(xué)學(xué)生的體重狀況,打算抽取一個(gè)容量為n的樣本,已知該校高一、高二、高三學(xué)生的數(shù)量之比依次為4:3:2,現(xiàn)用分層抽樣的方法抽出的樣本中高三學(xué)生有10人,那么樣本容量n為(
A.50
B.45
C.40
D.20

查看答案和解析>>

同步練習(xí)冊答案