A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
分析 由約束條件畫出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),進(jìn)一步求出最值,結(jié)合最大值與最小值的差為7求得實數(shù)m的值.
解答 解:由約束條件$\left\{\begin{array}{l}y-x≤1\\ x+y≤3\\ y≥m\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y-x=1}\\{x+y=3}\end{array}\right.$,解得A(1,2),
聯(lián)立$\left\{\begin{array}{l}{y=m}\\{y-x=1}\end{array}\right.$,解得B(m-1,m),
化z=x+3y,得$y=-\frac{x}{3}+\frac{z}{3}$.
由圖可知,當(dāng)直線$y=-\frac{x}{3}+\frac{z}{3}$過A時,z有最大值為7,
當(dāng)直線$y=-\frac{x}{3}+\frac{z}{3}$過B時,z有最小值為4m-1,
由題意,7-(4m-1)=7,解得:m=$\frac{1}{4}$.
故選:C.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{b^2}{a}$ | B. | $\frac{b^2}{c}$ | C. | $\frac{c^2}{a}$ | D. | $\frac{c^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1) | C. | (-1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com