19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,|F1F2|=2c(c>0).若點(diǎn)P在橢圓上,且∠F1PF2=90°,則點(diǎn)P到x軸的距離為(  )
A.$\frac{b^2}{a}$B.$\frac{b^2}{c}$C.$\frac{c^2}{a}$D.$\frac{c^2}$

分析 作橢圓,從而可得|PF1|+|PF2|=2a,|PF1|2+|PF2|2=|F1F2|2,從而可得|PF1|•|PF2|=2b2,再由三角形的面積公式求得.

解答 解:由題意作圖如右,
∵|PF1|+|PF2|=2a,
又∵∠F1PF2=90°,
∴|PF1|2+|PF2|2=|F1F2|2,
∴|PF1|•|PF2|
=$\frac{(|P{F}_{1}|+|P{F}_{2}|)^{2}-(|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2})}{2}$
=$\frac{4{a}^{2}-4{c}^{2}}{2}$=2b2,
設(shè)點(diǎn)P到x軸的距離為d,
則|PF1|•|PF2|=|F1F2|•d,
故2b2=2cd,
故d=$\frac{^{2}}{c}$,
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的定義的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了等面積的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2cos2$\frac{x}{2}$-$\sqrt{3}$sinx.
(1)求函數(shù)f(x)的最小正周期和值域;
(2)設(shè)α∈(-π,0),且f(α-$\frac{π}{6}$)=$\frac{13}{5}$,求sin(2α+$\frac{π}{12}$)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知p:4x2+12x-7≤0,q:a-3≤x≤a+3.
(1)當(dāng)a=0時(shí),若p真q假,求實(shí)數(shù)x的取值范圍;
(2)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題“若a>1,則a>0”的逆命題是( 。
A.若a>0,則a>1B.若a≤0,則a>1C.若a>0,則a≤1D.若a≤0,則a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線y2=2px(p>0)的準(zhǔn)線方程是$x=-\frac{1}{2}$.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線y=k(x-2)(k≠0)與拋物線相交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),證明:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,且PD=AB=2.
(Ⅰ)求PB的長(zhǎng);
(Ⅱ)求四棱錐P-ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}y-x≤1\\ x+y≤3\\ y≥m\end{array}\right.$,若z=x+3y的最大值與最小值的差為7,則實(shí)數(shù)m=(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=cosx(sinx+\sqrt{3}cosx)-\frac{{\sqrt{3}}}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若x∈(0,π),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.對(duì)于曲線C:f(x,y)=0,若存在非負(fù)實(shí)常數(shù)M和m,使得曲線C上任意一點(diǎn)P(x,y)有m≤|OP|≤M成立(其中O為坐標(biāo)原點(diǎn)),則稱曲線C為既有外界又有內(nèi)界的曲線,簡(jiǎn)稱“有界曲線”,并將最小的外界M0成為曲線C的外確界,最大的內(nèi)界m0成為曲線C的內(nèi)確界.
(1)曲線y2=4x與曲線(x-1)2+y2=4是否為“有界曲線”?若是,求出其外確界與內(nèi)確界;若不是,請(qǐng)說(shuō)明理由;
(2)已知曲線C上任意一點(diǎn)P(x,y)到定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積為常數(shù)a(a>0),求曲線C的外確界與內(nèi)確界.

查看答案和解析>>

同步練習(xí)冊(cè)答案