已知等比數(shù)列{an}中,各項都是正數(shù),且a2
1
2
a4,2a3成等差數(shù)列,則
a7+a8
a5+a6
=( 。
A、1+
2
B、1-
2
C、3+2
2
D、3-2
2
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列中a2,
1
2
a4,2a3成等差數(shù)列,可求q的值,從而求得式子的值.
解答: 解:等比數(shù)列{an}中,∵a2,
1
2
a4,2a3成等差數(shù)列,
∴a4=a2+2a3,即a1q3=a1q+2a1q2
∵a1>0,q>0,∴q2=1+2q,
∴q=1+
2
,
a7+a8
a5+a6
=
(a5+a6)q2
a5+a6
=q2=3+2
2

故選:C.
點評:本題考查了等差數(shù)列與等比數(shù)列性質(zhì)的綜合應(yīng)用,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x
a-x2
-
1
2
對于任意x∈[-1,1],都有f(x)≤0成立,則實數(shù)a的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列變形不正確的是(  )
A、由
x
2
=0,得x=0
B、由3x=-12,得x=-4
C、由2x=3,得x=
3
2
D、由
3
4
x=2,得x=
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
π
6
-x)cos(
π
3
-x)-sinxcosx+
1
4

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)g(x)=-2
2
f(
x
2
+
π
4
)
,若在△ABC中,g(A-
π
4
)+g(B-
π
4
)=4
6
sinAsinB,角A,B,C所對的邊分別是a,b,c,且C=60°,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)x,y滿足x+y=1,且
1
x
+
a
y
≥4對任意x,y∈(0,1)恒成立,則正數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項式(2x2+
1
x
)n
(n∈N*)展開式中,前三項的二項式系數(shù)和是56,則展開式中含x
5
2
項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,則a9-
1
2
a10的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果奇函數(shù)f(x)在[3,6]上是增函數(shù)且最大值是4,那么f(x)在[-6,-3]上是( 。
A、減函數(shù)且最小值是-4
B、減函數(shù)且最大值是-4
C、增函數(shù)且最小值是-4
D、增函數(shù)且最大值是-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5,6},集合A={2,4,6},B={1,2,3,5},則(∁UA)∩B等于( 。
A、Φ
B、{1,3,4,5,6}
C、{1,3,5}
D、{1,2,3,5}

查看答案和解析>>

同步練習(xí)冊答案