19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,其公差為-1,若S1,S2,S4成等比數(shù)列,則a1=( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 運(yùn)用等差數(shù)列的求和公式和等比數(shù)列的中項(xiàng)的性質(zhì),解方程可得首項(xiàng).

解答 解:前n項(xiàng)和為Sn=na1-$\frac{1}{2}$n(n-1),
由S1,S2,S4成等比數(shù)列,可得S22=S1S4,即為(2a1-1)2=a1(4a1-6),
解得a1=-$\frac{1}{2}$,
故選D.

點(diǎn)評(píng) 本題考查等差數(shù)列的求和公式,同時(shí)考查等比數(shù)列的中項(xiàng)的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1,直線l過原點(diǎn),
(1)若直線l與C有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)當(dāng)k=$\frac{1}{2}$時(shí),直線l截雙曲線C的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-l|+|x-3|.
(I)解不等式f(x)≤6;
(Ⅱ)若不等式f(x)≥ax-1對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}為等比數(shù)列,a1=3,a4=81,若數(shù)列{bn}滿足bn=(n+1)log3an,則{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=x2+(2a-1)x+1-2a.
(1)若f(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間$(-1,0)及(0,\frac{1}{2})$內(nèi)各有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是上底面A1B1C1D1和側(cè)面CDD1C1的中心.
(1)求cos∠EAF;
(2)求直線AE與平面CDD1C1所成角的正弦值;
(3)求直線AF與平面BDD1B1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=max{|x+1|,|x-3|}的最小值(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.行列式$|{\begin{array}{l}a&b\\ c&d\end{array}}|$(a、b、c、d∈{-1,1,2})所有可能的值中,最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線l與曲線y=x3相切于點(diǎn)P,且與直線y=3x+2平行,則點(diǎn)P的坐標(biāo)為(1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案