分析 利用分式的幾何意義結(jié)合直線斜率的定義將$\frac{xy}{{{x^2}+{y^2}}}$轉(zhuǎn)化為直線斜率問題,利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則x>0,y>0,$\frac{xy}{{{x^2}+{y^2}}}$=$\frac{\frac{y}{x}}{1+(\frac{y}{x})^{2}}$,
設(shè)k=$\frac{y}{x}$,則k>0,
$\frac{xy}{{{x^2}+{y^2}}}$=$\frac{\frac{y}{x}}{1+(\frac{y}{x})^{2}}$=$\frac{k}{1+{k}^{2}}$=$\frac{1}{k+\frac{1}{k}}$,
則k的幾何意義是區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的斜率,
由圖象知OB的斜率最小,OA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{y=1}\\{x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即B(2,1),
則OB的斜率k=$\frac{1}{2}$,OA的斜率k=2,
即$\frac{1}{2}$≤k≤2,
設(shè)f(k)=k+$\frac{1}{k}$,則函數(shù)在$\frac{1}{2}$≤k≤1上遞減,在1≤k≤2上遞增,
則最小值為f(1)=1+1=2,
f(2)=2+$\frac{1}{2}$=$\frac{5}{2}$,f($\frac{1}{2}$)=2+$\frac{1}{2}$=$\frac{5}{2}$=f(2),
則2≤f(k)≤$\frac{5}{2}$,
則2≤k+$\frac{1}{k}$≤$\frac{5}{2}$,
則$\frac{2}{5}$≤$\frac{1}{k+\frac{1}{k}}$≤$\frac{1}{2}$,
即$\frac{xy}{{{x^2}+{y^2}}}$的取值范圍為[$\frac{2}{5}$,$\frac{1}{2}$],
故答案為:[$\frac{2}{5}$,$\frac{1}{2}$]
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用分式的特點(diǎn)進(jìn)行轉(zhuǎn)化,結(jié)合直線斜率的公式以及基本不等式的性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {2,4} | C. | {2} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\underset{lim}{x→∞}$$\frac{sinx}{x}$=1 | B. | $\underset{lim}{x→0}$$\frac{sinx}{x}$=0 | C. | $\underset{lim}{x→0}$xsin$\frac{1}{x}$=1 | D. | $\underset{lim}{x→∞}$xsin$\frac{1}{x}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com