16.在數(shù)列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n}$(n∈N+),試求數(shù)列{an}的通項公式.

分析 由數(shù)列的遞推公式,利用累乘法能求出數(shù)列{an}的通項公式.

解答 解:∵數(shù)列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n}$(n∈N+),
∴${a}_{n}={a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=$1×\frac{3}{1}×\frac{4}{2}×\frac{5}{3}×…×\frac{n-1}{n-3}×\frac{n}{n-2}×\frac{n+1}{n-1}$
=$1×\frac{1}{2}×n(n+1)$
=$\frac{n(n+1)}{2}$.
∴數(shù)列{an}的通項公式an=$\frac{n(n+1)}{2}$.

點評 本題考查數(shù)列的通項公式的求法,是中檔題,解題時要認(rèn)真審題,注意累乘法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,若過點F且與斜率為正數(shù)的漸近線垂直的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{2}$)C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.二次函數(shù)y=x2-4x+5的對稱軸方程是x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)y=2x-${log}_{\frac{1}{2}}$(x+1)在區(qū)間[1,3]上的最大值和最小值之和為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某產(chǎn)品廣告費x(千元)與銷售額y(萬元)之間有如圖對應(yīng)數(shù)據(jù):
x24568
y34657
(1)求銷售額y關(guān)于廣告費x的線性回歸方程$\widehat{y}$=bx+a;
(2)當(dāng)廣告費支出1萬元時,預(yù)測銷售額為多少萬元?
(參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+1.5-2 
(2)1g500+1g$\frac{8}{5}$-$\frac{1}{2}$1g64+(lg2+1g5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點(-a-6,3),(2a,3a)的直線與過點點(2,1),(3,1)的直線垂直,則實數(shù)a的值是( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=|2x-1|-1;
(1)作出函數(shù)f(x)的圖象;
(2)討論方程f(x)-2a=0(a∈R)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=ax5+bx3+cx+3,若f(3)=10,則f(-3)=-4.

查看答案和解析>>

同步練習(xí)冊答案