20.若雙曲線E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線E上,且|PF1|=3,則|PF2|等于9.

分析 設(shè)|PF2|=x,由雙曲線的定義及性質(zhì)得|x-3|=6,由此能求出|PF2|.

解答 解:設(shè)|PF2|=x,
∵雙曲線E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線E上,且|PF1|=3,
∴a=3,b=4.c=5,
∴|x-3|=6,解得x=9或x=-3(舍).
∴|PF2|=9.
故答案為:9.

點評 本題考查雙曲線中線段長的求法,是基礎(chǔ)題,解題時要注意雙曲線定義及簡單性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)圖象上的兩點P,Q的橫坐標依次為1,5,O為坐標原點,求S△OPQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.平行四邊形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,則該四邊形的面積為( 。
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列不等式中成立的是( 。
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b>0,則$\frac{a}$>$\frac{b+1}{a+1}$D.若a>b>0,則a+$\frac{1}$>b+$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.與雙曲線與$\frac{x^2}{3}-{y^2}=1$有共同漸近線且與橢圓$\frac{x^2}{3}+{y^2}=1$有共同焦點,則此雙曲線的方程為$\frac{{x}^{2}}{\frac{3}{2}}-\frac{{y}^{2}}{\frac{1}{2}}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某甜品店制作一種蛋筒冰激凌,其上部分是半球形,下半部分呈圓錐形(如圖),現(xiàn)把半徑為10cm的圓形蛋皮等分成5個扇形蛋皮,用一個扇形蛋皮圍成圓錐的側(cè)面(蛋皮的厚度忽略不計).
(1)求該蛋筒冰激凌的高度;
(2)求該蛋筒冰激凌的體積(精確到0.01cm3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{a}}}({x^2}-4x+13)$,則函數(shù)g(x)的最小值為( 。
A.2log23B.2C.3D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=4x2-4ax+a2-2a+2.
(1)若函數(shù)f(x)在區(qū)間[0,2]上的最大值記為g(a),求g(a)的解析式;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最小值為3,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出下面幾種說法:
①相等向量的坐標相同;
②平面上一個向量對應(yīng)于平面上唯一的坐標;
③一個坐標對應(yīng)于唯一的一個向量;
④平面上一個點與以原點為始點,該點為終點的向量一一對應(yīng).
其中正確說法的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案