分析 求出第三條邊界與坐標(biāo)軸的交點(diǎn)坐標(biāo),得到f(k)的解析式,利用基本不等式得出面積的最小值.
解答 解:直線kx-y-2k+1=0與坐標(biāo)軸的交點(diǎn)坐標(biāo)為(0,1-2k),($\frac{2k-1}{k}$,0).
∴平面區(qū)域的面積f(k)=$\frac{1}{2}$×(1-2k)×$\frac{2k-1}{k}$=$\frac{4{k}^{2}-4k+1}{-2k}$=-2k-$\frac{1}{2k}$+2,
∵k<0,∴f(k)=-2k-$\frac{1}{2k}$+2≥2+2=4.當(dāng)且僅當(dāng)-2k=-$\frac{1}{2k}$即k=-$\frac{1}{2}$時(shí),取等號(hào).
故答案為:4.
點(diǎn)評(píng) 本題考查了平面區(qū)域的概念,基本不等式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -x-2 | B. | -x2 | C. | e-2x | D. | -e2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com