【題目】已知函數(shù),其中為常數(shù), 為自然對數(shù)的底數(shù).

1)若在區(qū)間上的最大值為,求的值;

2)當時,判斷方程是否有實根?若無實根請說明理由,若有實根請給出根的個數(shù).

【答案】(1)(2)方程無解

【解析】試題分析:(1)在定義域(0,+∞)內(nèi)對函數(shù)f(x)求導,對a進行分類討論并判斷其單調性,根據(jù)f(x)在區(qū)間(0,e]上的單調性求其最大值,并判斷其最大值是否為﹣3,若是就可求出相應的最大值.

2)根據(jù)(1)可求出|fx|的值域,通過求導可求出函數(shù)的值域,通過比較上述兩個函數(shù)的值域,就可判斷出方程是否有實數(shù)解.

試題解析:

, ,

①當時, ≥0,從而上單調遞增,∴舍;

②當時, 上遞增,在上遞減, ,令,得

(Ⅱ)當時,

當0<x<1時, >0;當x>1時。<0在定義域上唯一的極(大)值點,則

| |≥1,又令, ,

∴方程無解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若對任意, 有唯一確定的與之對應,則稱為關于, 的二元函數(shù),現(xiàn)定義滿足下列性質的為關于實數(shù), 的廣義距離

)非負性: ,當且僅當時取等號;

)對稱性: ;

)三角形不等式: 對任意的實數(shù)均成立.

給出三個二元函數(shù):①,

則所有能夠成為關于 的廣義距離的序號為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等腰梯形中(如圖1),, , 為線段的中點, 為線段上的點, ,現(xiàn)將四邊形沿折起(如圖2).

圖1 圖2

⑴求證: 平面;

⑵在圖2中,若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡時代的進步,流量成為手機的附帶品,人們可以利用手機隨時隨地的瀏覽網(wǎng)頁,聊天,看視頻,因此,社會上產(chǎn)生了很多低頭族.某研究人員對該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調查,所得結果統(tǒng)計如下圖所示:

(Ⅰ)以頻率估計概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況

在300M∽400M之間,求的期望

(Ⅱ)求被抽查的居民使用流量的平均值;

(Ⅲ)經(jīng)過數(shù)據(jù)分析,在一定的范圍內(nèi),流量套餐的打折情況與其日銷售份數(shù)成線性相關

關系,該研究人員將流量套餐的打折情況與其日銷售份數(shù)的結果統(tǒng)計如下表所示:

折扣

1

2

3

4

5

銷售份數(shù)

50

85

115

140

160

試建立關于的的回歸方程.

附注:回歸方程中斜率和截距的最小二乘估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, , , .

(Ⅰ)證明:

(Ⅱ)若,在棱上是否存在點,使得二面角的大小為,若存在,求的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有m個()實數(shù),它們滿足下列條件:①,

記這m個實數(shù)的和為,

.

1)若,證明: ;

2)若m=5,滿足題設條件的5個實數(shù)構成數(shù)列.C為所有滿足題設條件的數(shù)列構成的集合.集合,求A中所有正數(shù)之和;

3)對滿足題設條件的m個實數(shù)構成的兩個不同數(shù)列,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修44:極坐標與參數(shù)方程

已知在平面直角坐標系xOyO為坐標原點,曲線C (α為參數(shù)),在以平面直角坐標系的原點為極點x軸的正半軸為極軸,取相同單位長度的極坐標系直線lρ.

()求曲線C的普通方程和直線l的直角坐標方程;

()曲線C上恰好存在三個不同的點到直線l的距離相等分別求出這三個點的極坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)yf(x)的導函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)yf(x)在區(qū)間內(nèi)單調遞增;

②函數(shù)yf(x)在區(qū)間內(nèi)單調遞減;

③函數(shù)yf(x)在區(qū)間(4,5)內(nèi)單調遞增;

④當x2時,函數(shù)yf(x)有極小值;

⑤當x時,函數(shù)yf(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

同步練習冊答案