20.正方體ABCD-A1B1C1D1的棱長為2,點(diǎn)M和N分別是B1D1和B1C1的中點(diǎn),則異面直線AM和CN所成角的余弦值為$\frac{\sqrt{30}}{10}$.

分析 以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線AM和CN所成角的余弦值.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
則A(2,0,0),M(1,1,2),C(0,2,0),N(1,2,2),
$\overrightarrow{AM}$=(-1,1,2),$\overrightarrow{CN}$=(1,0,2),
設(shè)異面直線AM和CN所成角為θ,
則cosθ=$\frac{|\overrightarrow{AM}•\overrightarrow{CM}|}{|\overrightarrow{AM}|•|\overrightarrow{CM}|}$=$\frac{3}{\sqrt{6}•\sqrt{5}}$=$\frac{\sqrt{30}}{10}$.
∴異面直線AM和CN所成角的余弦值為$\frac{\sqrt{30}}{10}$.
故答案為:$\frac{\sqrt{30}}{10}$.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若向量$\overrightarrow{a}$=(x,4,5),$\overrightarrow$=(1,-2,2)且$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{\sqrt{2}}{6}$,則x的值為  ( 。
A.3B.3或-11C.-3D.-3或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.偶函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,0≤φ≤π)的圖象向右平移$\frac{π}{4}$個(gè)單位得到的圖象關(guān)于原點(diǎn)對(duì)稱,則ω的值可以為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果直線3ax+y-1=0與直線(1-2a)x+ay+1=0平行.那么a等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知圓C的圓心C極坐標(biāo)為(1,$\frac{π}{2}$),半徑r=1.
(1)求圓C的極坐標(biāo)方程;
(2)若α∈(0,$\frac{π}{2}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù)),點(diǎn)P的直角坐標(biāo)為(1,2),直線l交圓C于A,B兩點(diǎn),求$\frac{|PA|•|PB|}{|PA|+|PB|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某產(chǎn)品的廣告費(fèi)x(萬元)與銷售額y(萬元)的統(tǒng)計(jì)數(shù)據(jù)如表:
 廣告費(fèi)用x 2 3 5 6
 銷售額y 20 30 40 50
由最小二乘法可得回歸方程$\widehat{y}$=7x+a,據(jù)此預(yù)測,當(dāng)廣告費(fèi)用為7萬元時(shí),銷售額約為( 。
A.56萬元B.58萬元C.68萬元D.70萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=1og4(x2+2x+1)(a≤x≤b)的值域是[a,b],a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=a+$\sqrt{x}$lnx(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y-x+1≥0}\\{2y-kx-8≤0}\\{ky+2x-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=y-x既存在最大值,又存在最小值,則實(shí)數(shù)k的取值范圍為(  )
A.(-∞,1]B.(-∞,2]C.[1,2]D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案