3.已知m,n為正整數(shù),且直線2x+(n-1)y-2=0與直線mx+ny+3=0互相平行,則2m+n的最小值為( 。
A.7B.9C.11D.16

分析 由直線的平行關(guān)系可得$\frac{2}{m}$+$\frac{1}{n}$=1,整體代入可得2m+n=(2m+n)($\frac{2}{m}$+$\frac{1}{n}$)=5+$\frac{2n}{m}$+$\frac{2m}{n}$,由基本不等式可得.

解答 解:∵直線2x+(n-1)y-2=0與直線mx+ny+3=0互相平行,
∴2n=m(n-1),變形可得m+2n=mn,同除以mn可得$\frac{2}{m}$+$\frac{1}{n}$=1(m>0、n>0),
∴2m+n=(2m+n)($\frac{2}{m}$+$\frac{1}{n}$)=5+$\frac{2n}{m}$+$\frac{2m}{n}$≥5+2$\sqrt{\frac{2n}{m}•\frac{2m}{n}}$=9,
當(dāng)且僅當(dāng)$\frac{2n}{m}$=$\frac{2m}{n}$即m=n=3(符合m,n為正整數(shù))時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查直線的一般式方程和平行關(guān)系,涉及整體代入和基本不等式求最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)和g(x)是兩個(gè)定義在區(qū)間M上的函數(shù),若對(duì)任意的x∈M,存在常數(shù)x0∈M,使的f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則稱f(x)與g(x)在區(qū)間M上是“相似函數(shù)”,若f(x)=2x3-3(a+1)x2+6ax+b與g(x)=x+$\frac{4}{x}$在區(qū)間[1,3]上是“相似函數(shù)”,則a,b的值分別是( 。
A.a=-2,b=0B.a=-2,b=-2C.a=2,b=0D.a=2,b=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}({n≥1,n∈{N^*}})$,數(shù)列{bn}是以1為首項(xiàng),2公比的等比數(shù)列.
(Ⅰ)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(Ⅱ)求數(shù)列$\left\{{\frac{b_n}{a_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)是定義域?yàn)镽的單調(diào)減的奇函數(shù),若f(3x+1)+f(1)≥0,則x的取值范圍是$({-∞,-\frac{2}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于M(3,0).
(1)求f(x)的解析式,并求y=$\frac{f(x)}{x}$+4lnx的單調(diào)減區(qū)間;
(2)是否存在兩個(gè)不等正數(shù)s,t(x>t),當(dāng)x∈[s,t]時(shí),函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出下列四個(gè)命題,其中假命題是( 。
A.“?x∈R,sinx≤1”的否定為“?x∈R,sinx>1”
B.“若a>b,則a-5>b-5”的逆否命題是“若a-5≤b-5,則a≤b”
C.?x0∈(0,2),使得sinx=1
D.?x∈R,2x-1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,BC=2,若對(duì)任意的實(shí)數(shù)t,|t$\overrightarrow{AB}$+(1-t)$\overrightarrow{AC}$|≥|t0$\overrightarrow{AB}$+(l-t0)$\overrightarrow{AC}$|=3(t0∈R),則$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值為8,此時(shí)t0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)$Q({-2\sqrt{2},0})$及拋物線x2=-4y上一動(dòng)點(diǎn)P(x,y),則|y|+|PQ|的最小值是(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.兩個(gè)向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$-2$\overrightarrow$|=1,|2$\overrightarrow{a}$+3$\overrightarrow$|=$\frac{1}{3}$,則(5$\overrightarrow{a}$-3$\overrightarrow$)•($\overrightarrow{a}$-9$\overrightarrow$)的值為$\frac{80}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案