20.函數(shù)y=cos($\frac{π}{2}$-x)sin($\frac{π}{2}$+x)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

分析 由條件利用誘導(dǎo)公式、二倍角的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,得出結(jié)論.

解答 解:∵函數(shù)y=cos($\frac{π}{2}$-x)sin($\frac{π}{2}$+x)=sinx•cosx=$\frac{1}{2}$sin2x,
故此函數(shù)的最小正周期為 $\frac{2π}{2}$=π,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、二倍角的正弦公式的應(yīng)用,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知a>0,若函數(shù)f(x)=sinx•lg(x+$\sqrt{a+{x}^{2}}$)為偶函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足2Sn+an=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=nan,求證:c1+c2+c3+…+cn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=log4(ax2+2x+3),若f(1)=1,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=mlog5x+nlog6x+3,f($\frac{1}{2016}$)=6,則f(2016)=( 。
A.-4B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若f(x)為定義在R上的偶函數(shù),且f(x-2)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x2+x+1,則當(dāng)x∈[1,2]時(shí),f(x)=2x2-9x+11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知兩條直線方程:l1:ax-y+6=0,l2:x+ay-4=0
(1)求證:l1與l2的交點(diǎn)總在同一個(gè)圓C上.
(2)求證:無(wú)論a取何值,直線l:(a+1)x-(2a-1)y+6a-9=0恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若直線ax+by=2與圓x2+y2=1有公共點(diǎn),則( 。
A.a2+b2≤4B.a2+b2≥4C.$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≤4D.$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.復(fù)數(shù)z=$\frac{2}{1-i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案