19.復數(shù)z=$\frac{2}{1-i}$(i為虛數(shù)單位)在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復數(shù)的運算法則、復數(shù)的幾何意義即可得出.

解答 解:$z=\frac{2}{1-i}=1+i$,在復平面內(nèi)復數(shù)z對應點的坐標為(1,1),在第一象限.
故選:A.

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=cos($\frac{π}{2}$-x)sin($\frac{π}{2}$+x)的最小正周期為(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.下列說法中
①命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
②“x>1”是“|x|>0”的充分不必要條件
③對于常數(shù)m,n,“mn<0”是“方程mx2+ny2=1表示的曲線是雙曲線”的充要條件
④“p∨q為真”是“p∧q為真”的充分不必要條件
其中說法正確的有②③(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,$|ϕ|<\frac{π}{2}$)的一段圖象過點(0,1)
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象上各點的縱坐標變?yōu)樵瓉淼?\frac{1}{2}$(橫坐標不變),得到函數(shù)y=g(x)的圖象,求y=g(x)的解析式及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.有如下命題:
(1)${log_{0.5}}6<{0.5^6}<{6^{0.5}}$;
(2)若函數(shù)y=loga(x-1)+1的圖象過定點P(m,n),則logmn=0;
(3)函數(shù)y=x-1的單調(diào)遞減區(qū)間為(-∞,0)∪(0,+∞);
(4)函數(shù)y=2x與y=log2x互為反函數(shù);
(5)直線的傾斜角α的取值范圍為[0°,90°)∪(90°,180°).
其中正確命題的序號是(1)(2)(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}中,${a_1}=1,二次函數(shù)f(x)=\frac{1}{2}{a_n}{x^2}+({2^{-n}}-{a_{n+1}})x$的對稱軸為$x=\frac{1}{2}$.
(1)試證明{2n•an}是等差數(shù)列,并求{an}的通項公式;
(2)設{an}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,若p=0.9,則輸出的n為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各角中,與50°的角終邊相同的角是(  )
A.-310°B.-50°C.140°D.40°

查看答案和解析>>

同步練習冊答案