已知函數(shù)f(x)=
|log5(1-x)|(x<1)
-(x-2)2+2(x≥1)
,則關(guān)于x的方程f(|x|)=a的實數(shù)個數(shù)不可能為( 。
A、3個B、4個C、5個D、6個
考點:根的存在性及根的個數(shù)判斷
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:關(guān)于x的方程f(|x|)=a的實數(shù)個數(shù)可由函數(shù)y=f(|x|)的圖象作出,從而解得.
解答: 解:作函數(shù)y=f(|x|)的圖象如下,

由圖可知,當(dāng)a=0時,有三個根,
當(dāng)a=2時,有四個根,
當(dāng)1<a<2時,有6個根,
沒有5個根的情況,
故選C.
點評:本題考查了函數(shù)的零點與方程的根的聯(lián)系與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2aex(a>0,e為自然對數(shù)的底數(shù))的圖象與直線x=0的交點為M,函數(shù)g(x)=ln
x
a
(a>0)的圖象與直線y=0的交點為N,|MN|恰好是點M到函數(shù)g(x)=ln
x
a
(a>0)圖象上的最小值,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-x
2+x
(a>0,且a≠1)為奇函數(shù),且f(1)=-1.
(1)求實數(shù)a與m的值;
(2)用定義證明函數(shù)f(x)的單調(diào)性;
(3)解不等式f(
1
2x
)+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)g(x)=sin(
π
4
x-
π
6
)-2cos2
π
8
x)+1.
(1)求f(x)的對稱中心,對稱軸,單調(diào)增區(qū)間.
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=1對稱,求當(dāng)x∈[0,
4
3
]時y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項,則剩下三項構(gòu)成等差數(shù)列的概率為( 。
A、
6
35
B、
9
35
C、1或
9
35
D、1或
6
35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在長方形ABCD中,AB=2,BC=1,在長方形ABCD中任取一點P,求∠APB<∠90°的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了保護環(huán)境,發(fā)展低碳經(jīng)濟,甲、乙兩企業(yè)在國家科研部門的支持下,進行技術(shù)攻關(guān),采用新工藝,減少二氧化碳排放量.已知從2009年6月起至2010年3月止,兩企業(yè)每月的減排量如右圖所示,則甲、乙兩企業(yè)在這10個月內(nèi)月平均減排量分別為( 。
A、133,133
B、134,133
C、134,134
D、1343,134

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x-2)5
2
+y)4的展開式中,x3y2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,拋物線y2=4cx(c>0)的準(zhǔn)線交該雙曲線于A,B兩點,若△ABF是銳角三角形且c2=a2+b2,則該雙曲線離心率e的取值范圍是( 。
A、(1,
3
)
B、(1+
2
,+∞)
C、(
3
,2
2
)
D、(1,1+
2
)

查看答案和解析>>

同步練習(xí)冊答案