A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 設l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入拋物線方程,利用韋達定理,即可得出結論.
解答 解:設l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入拋物線方程整理得t2+(-2$\sqrt{2}$p-8$\sqrt{2}$)t+32+8p=0.
∴|AP1|•|AP2|=|t1•t2|=32+8p.
又|P1P2|2=(t1+t2)2-4t1t2=8p2+32p,|P1P2|2=|AP1|•|AP2|,
∴8p2+32p=32+8p,即p2+3p-4=0.
∴p=1.
故選:A.
點評 本題考查直線與拋物線的位置關系,考查直線的參數(shù)方程,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 相切 | C. | 相離 | D. | 無法判斷 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com