【題目】已知函數(shù).

時,求函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象在點處的切線的傾斜角為,函數(shù)當且僅當在處取得極值,其中的導函數(shù),求取值范圍

【答案】() 單調(diào)區(qū)間單調(diào)區(qū)間;() .

【解析】

試題分析:()求單調(diào)區(qū)間,求出函數(shù)定義域后,可再求得導數(shù),在定義域內(nèi)解不等式得增區(qū)間,解不等式得減區(qū)間;()本小題中參數(shù)較多,首先求出參數(shù)值或它們之間的關系,由導數(shù)的幾何意義可求得,由極值的定義可求得的關系,這樣問題中只含有一個參數(shù),由及極值唯,問題轉(zhuǎn)化為得時,恒成立,由一元二次不等式與二次函數(shù)的性質(zhì)可得范圍.

試題解析:(),

時,令,令,

函數(shù)的單調(diào)區(qū)間單調(diào)區(qū)間

()函數(shù)的圖象在點處的切線的傾斜角為,

,即

所以所以

因為處有極值,故,從而可得,則又因為僅在處有極值,

所以上恒成立,當時,由,即,使得,所以不成立,故

時,恒成立,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,存在定點,使得對于任意的都有,求點的坐標;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式.

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數(shù)圖象的一部分,當時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當注意力指數(shù)大于80時學習效果最佳.

(1)試求的函數(shù)關系式;

(2)教師在什么時段內(nèi)安排核心內(nèi)容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩組共抽取4名工人進行技術考核.

(1)求從甲、乙兩組各抽取的人數(shù);

(2)求從甲組抽取的工人中恰有1名女工人的概率;

(3)求抽取的4名工人中恰有2名男工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC是銳角三角形,cos22A+sin2A=1.

)求角A;

)若BC=1,B=x,求ABC的周長f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是坐標原點,若橢圓的離心率為,右頂點為,上頂點為,的面積為

1)求橢圓的標準方程;

2)已知點,為橢圓上兩動點,若有,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

討論的單調(diào)區(qū)間;

若直線的圖象恒在函數(shù)圖像的上方,求的取值范圍;

若存在,,使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網(wǎng)購者進一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)

此判斷能否在犯錯誤的概率不超過0.025的前提下認為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關?

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

同步練習冊答案