A. | (x+$\frac{3}{2}$)2+y2=$\frac{9}{4}$(在C1內(nèi)) | B. | (x+$\frac{3}{2}$)2+y2=$\frac{9}{4}$ | ||
C. | (x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$(在C1內(nèi)) | D. | (x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$ |
分析 設當直線l的方程為y=kx,通過聯(lián)立直線l與圓C1的方程,利用根的判別式大于0、韋達定理、中點坐標公式及參數(shù)方程與普通方程的相互轉(zhuǎn)化,計算即得結(jié)論
解答 解:設當直線l的方程為y=kx、A(x1,y1)、B(x2,y2),
與圓C1,聯(lián)立方程組,消去y可得:(1+k2)x2-6x+5=0,
由△=36-4(1+k2)×5>0,可得k2<$\frac{4}{5}$,
由韋達定理,可得x1+x2=$\frac{6}{1+{k}^{2}}$,
∴線段AB的中點M的軌跡C的參數(shù)方程為 $x=\frac{3}{1+{k}^{2}}$,$y=\frac{3k}{1+{k}^{2}}$,其中$-\frac{2\sqrt{5}}{5}<k<\frac{2\sqrt{5}}{5}$,
∴線段AB的中點M的軌跡C的方程為:(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$,其中 $\frac{5}{3}$<x≤3.
故選:C.
點評 本題考查求圓的方程、直線與曲線的位置關系問題,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\frac{2}{3}]$ | B. | [-3,0] | C. | [-3,0) | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2015}$ | B. | ${({\frac{3}{2}})^{\frac{1}{2014}}}$ | C. | $\root{2014}{2}$ | D. | $\root{2015}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com