分析 f(x)=x+$\frac{5}{x}$-4,使用基本不等式求出f(x)的最小值即可.
解答 解:∵x>0,
∴f(x)=$\frac{{x}^{2}-4x+5}{x}$=x+$\frac{5}{x}$-4$≥2\sqrt{5}$-4.
當(dāng)且僅當(dāng)x=$\frac{5}{x}$即x=$\sqrt{5}$時取等號,
∴當(dāng)x=$\sqrt{5}$時,f(x)取得最小值2$\sqrt{5}$-4.
故答案為:$\sqrt{5}$,2$\sqrt{5}$-4.
點評 本題考查了函數(shù)最值的求法,基本不等式的應(yīng)用,也可利用函數(shù)的單調(diào)性來解決.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ρsinθ=3 | B. | ρcosθ=3 | C. | $ρ=6sin(θ+\frac{π}{3})$ | D. | $ρ=6sin(θ-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+3y-4=0 | B. | 3x-2y+4=0 | C. | 2x-3y+4=0 | D. | 3x-2y+24=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com