10.已知函數(shù)f(x)=2+$\frac{1}{x-a}$的圖象經(jīng)過點(diǎn)(2,3),a為常數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用函數(shù)單調(diào)性定義證明f(x)在(a,+∞)上是減函數(shù).

分析 (1)把點(diǎn)(2,3)代入函數(shù)解析式求出a的值;根據(jù)f(x)的解析式,求出它的定義域;
(2)用單調(diào)性定義證明f(x)在(1,+∞)上是減函數(shù)即可.

解答 解:(1)函數(shù)f(x)=2+$\frac{1}{x-a}$的圖象經(jīng)過點(diǎn)(2,3),
∴2+$\frac{1}{2-a}$=3,解得a=1;
∴f(x)=2+$\frac{1}{x-1}$,且x-1≠0,則x≠1,
∴函數(shù)f(x)的定義域?yàn)閧x|x≠1};
(2)用函數(shù)單調(diào)性定義證明f(x)在(1,+∞)上是減函數(shù)如下;
設(shè)1<x1<x2,則
f(x1)-f(x2)=(2+$\frac{1}{{x}_{1}-1}$)-(2+$\frac{1}{{x}_{2}-1}$)=$\frac{{x}_{2}{-x}_{1}}{{(x}_{1}-1){(x}_{2}-1)}$,
∵1<x1<x2,∴x2-x1>0,x1-1>0,x2-1>0,
∴f(x1)>f(x2),
∴f(x)在(1,+∞)上是減函數(shù).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性定義與證明問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x2+ax+a)ex(a≤2,x∈R)
(Ⅰ)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的極大值為3?若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.把標(biāo)有1、1、2編號的小球,隨機(jī)放到4個編號為A、B、C、D的盒子中,記ξ為落在A盒中所有小球編號的數(shù)字之和(若盒中無球,則數(shù)字之和為0),則數(shù)學(xué)期望E(ξ)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax(a>0,a≠1)在[1,2]上的最大值和最小值的和為6,則a=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=4-log2x,x∈[2,8],則f(x)的值域是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\frac{x}{x-1}$,則在點(diǎn)(2,f(2))處的切線方程為x+y-4=0.(寫成一般式方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={1,2,3,4},B={3,4,5},則集合A∩B=( 。
A.{1,2,4}B.{1,2,5}C.{3,4}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=|x2+2x|,x∈R,若方程f(x)-a|x-1|=0恰有4個互異的小于1的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,4-2$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個箱子里裝有7只好燈泡、3只壞燈泡,從中取兩次,每次任取一只,每次取后不放回,已知第一次取到的是好燈泡,則第二次取到的還是好燈泡的概率是( 。
A.$\frac{2}{3}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案