18.已知兩直線l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圓C所得的弦長均為2,則圓C的面積是10π.

分析 設(shè)圓心C(a,b),設(shè)圓半徑r,利用勾股定理列出方程組,求出圓C的半徑,由此能求出圓的面積.

解答 解:∵兩直線l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圓C所得的弦長均為2,
∴設(shè)圓心C(a,b),設(shè)圓半徑r,
則$\left\{\begin{array}{l}{{r}^{2}-(\frac{|\sqrt{3}a-b+2|}{2})^{2}=1}\\{{r}^{2}-(\frac{|\sqrt{3}a-b-10}{2})^{2}=1}\end{array}\right.$,解得$\sqrt{3}a-b=4,{r}^{2}=10$,
∴圓C的面積S=πr2=10π.
故答案為:10π.

點(diǎn)評 本題考查圓的面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.先把函數(shù)y=cosx的圖象上所有點(diǎn)向右平移$\frac{π}{3}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到的函數(shù)圖象的解析式為( 。
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}滿足a3=5,a5+a7=22,等差數(shù)列{an}的前n項(xiàng)和Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)an和前n項(xiàng)和Sn
(Ⅱ)若bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某工廠生產(chǎn)甲、乙、丙三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為5:2:3,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲型號產(chǎn)品共15件,那么樣本容量n=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知:p:y=-(21+8m-m2x為減函數(shù),q:x2-2x+1-m2≤0(m>0),若?p是?q的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=e|x|-$\frac{1}{{x}^{2}}$,設(shè)a=sin2,b=cos2,c=tan2,則( 。
A.f(a)<f(b)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等比數(shù)列{an}的公比為3,且a1+a3=10,則a2a3a4的值為( 。
A.27B.81C.243D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若直線y=x+m與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有兩個(gè)公共點(diǎn),則m的取值范圍是( 。
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某校選定甲、乙、丙、丁、戊共5名教師去3個(gè)邊遠(yuǎn)地區(qū)支教(每地區(qū)至少1人),其中甲和乙一定不同地,甲和丙必須同地,則不同的選派方案共有30種.

查看答案和解析>>

同步練習(xí)冊答案