雙曲線4x2-3y2=12的焦距等于( 。
A、2
B、4
C、
7
D、2
7
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先把雙曲線方程化為標(biāo)準(zhǔn)方程,然后求出c,從而得到焦距2c.
解答: 解:把雙曲線4x2-3y2=12化為標(biāo)準(zhǔn)形式,得
x2
3
-
y2
4
=1

∴c=
3+4
=
7
,
∴雙曲線4x2-3y2=12的焦距2c=2
7

故選D.
點(diǎn)評:本題考查雙曲線的簡單性質(zhì),先把雙曲線化為標(biāo)準(zhǔn)形式后再求解是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
,
e3
為同一平面內(nèi)互不共線的三個(gè)單位向量,并滿足
e1
+
e2
+
e3
=
0
,且向量
a
=x
e1
+
n
x
e2
+(x+
n
x
e3
 (x∈R,x≠0,n∈N+).
(Ⅰ)求
e1
e2
所成角的大。    
(Ⅱ)記f(x)=|
a
|,試求f(x)的單調(diào)區(qū)間及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c (ac≠0),若f(x)<0的解集為(-1,m),則下列說法正確的是( 。
A、f(m-1)<0
B、f(m-1)>0
C、f(m-1)必與m同號
D、f(m-1)必與m異號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,b∈R,若兩集合相等,即{a,
b
a
,1}={a2,a+b,0},則a2014+b2014=( 。
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個(gè)病毒經(jīng)30分鐘繁殖為原來的2倍,且知病毒的繁衍規(guī)律為y=ekt,其中k為常數(shù),t表示時(shí)間(單位:小時(shí)),y表示病毒個(gè)數(shù),則k=
 
,經(jīng)過5小時(shí),1個(gè)病毒能繁殖為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,tanA=
1
4
,tanB=
3
5
,AB的長為
17
,試求:
(1)內(nèi)角C的大。
(2)最小邊的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電信部門規(guī)定:撥打市內(nèi)電話時(shí),如果通話時(shí)間不超過3分鐘,則收取通話費(fèi)0.2元,如果通話時(shí)間超過3分鐘,則超過部分以每分鐘0.1元收取通話費(fèi)(通話不足1分鐘時(shí)按1分鐘計(jì)),試設(shè)計(jì)一個(gè)計(jì)算通話費(fèi)用的算法.要求:
(1)畫出程序框圖;
(2)編寫程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m=(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)
2
3
+(1.5)-2;n=log3
427
3
+lg25+lg4+7log72.求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x<0時(shí),f(x)>0,則函數(shù)f(x)在[a,b]上有( 。
A、最小值f(a)
B、最大值f(b)
C、最小值f(b)
D、最大值f(
a+b
2

查看答案和解析>>

同步練習(xí)冊答案