某電信部門規(guī)定:撥打市內(nèi)電話時(shí),如果通話時(shí)間不超過3分鐘,則收取通話費(fèi)0.2元,如果通話時(shí)間超過3分鐘,則超過部分以每分鐘0.1元收取通話費(fèi)(通話不足1分鐘時(shí)按1分鐘計(jì)),試設(shè)計(jì)一個(gè)計(jì)算通話費(fèi)用的算法.要求:
(1)畫出程序框圖;
(2)編寫程序.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問題,偽代碼
專題:算法和程序框圖
分析:本題考查的知識(shí)點(diǎn)是設(shè)計(jì)程序框圖解決實(shí)際問題,我們根據(jù)題目已知中物品的托運(yùn)費(fèi)用計(jì)算規(guī)則,然后可根據(jù)分類標(biāo)準(zhǔn),設(shè)置兩個(gè)判斷框的并設(shè)置出判斷框中的條件,再由各段的輸出,確定判斷框的“是”與“否”分支對(duì)應(yīng)的操作,由此即可畫出流程圖,再編寫滿足題意的程序.
解答: 解:(1)程序框圖如下:

(2)程序如下:
Input t
If t<=3 then
  c=0.2
 Else
  c=0.2+0.1*(t-3)
End if
Print c
End
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是算法程序框圖,偽代碼,編寫程序解決分段函數(shù)問題,其中根據(jù)算法步驟畫出程序框圖,熟練掌握各種框圖對(duì)應(yīng)的語句是解答本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)y=
1
x
+x在區(qū)間[-2,-1)上的單調(diào)性,并用定義證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
, x≥0
(
1
2
)x, x<0
,則f(f(-2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線4x2-3y2=12的焦距等于( 。
A、2
B、4
C、
7
D、2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,-2),
b
=(2sinxcosx,cos2x-
1
2
),函數(shù)f(x)=
a
b

(Ⅰ)若f(x)=0,求x的值.
(Ⅱ)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3mx2+nx+5m,在x=-1處有極值0;
(Ⅰ)求m,n的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=(m2-3m+3)•xm+1為偶函數(shù),則m=( 。
A、1B、2C、1或2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2lnx-x2的極值點(diǎn)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+x+1在x=-1處有極值,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案