分析 (Ⅰ)根據(jù)余弦函數(shù)的倍角公式,以及一元二次方程進(jìn)行求解即可求A;
(Ⅱ)若a=$\sqrt{13}$,結(jié)合△ABC的面積是3$\sqrt{3}$,以及余弦定理建立方程組關(guān)系即可求b+c的值.
解答 解:(Ⅰ)∵cos2A+3cosA-1=0.
∴2cos2A+3cosA-2=0.
即cosA=-2(舍)或cosA=$\frac{1}{2}$,
則A=$\frac{π}{3}$;
(Ⅱ)若a=$\sqrt{13}$,△ABC的面積是3$\sqrt{3}$,
則S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{\sqrt{3}}{2}$bc=3$\sqrt{3}$,
∴bc=12,
由余弦定理得a2=b2+c2-2bccosA,
即13=b2+c2-2×$12×\frac{1}{2}$,
即b2+c2=25,
即(b+c)2=25+2bc=25+24=49,
即b+c=7.
點(diǎn)評(píng) 本題主要考查解三角形的應(yīng)用,根據(jù)余弦函數(shù)的倍角公式以及余弦定理,三角形的面積公式是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 2$\sqrt{17}$ | C. | 2$\sqrt{23}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 4 | C. | -4 | D. | -$2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com