17.設(shè)函數(shù)$y={x^{\frac{1}{2}}}$,則導(dǎo)函數(shù)y′=$\frac{1}{2}{x^{-\frac{1}{2}}}$.

分析 根據(jù)題意和求導(dǎo)公式求出函數(shù)的導(dǎo)數(shù)即可.

解答 解:由題意得,$y′=({x}^{\frac{1}{2}})′$=$\frac{1}{2}{x^{-\frac{1}{2}}}$,
故答案為:$\frac{1}{2}{x^{-\frac{1}{2}}}$.

點(diǎn)評(píng) 本題考查求導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x,y,z∈(0,+∞),a=x+$\frac{1}{y},b=y+\frac{1}{z},c=z+\frac{1}{x}$,則a,b,c三個(gè)數(shù)( 。
A.至少有一個(gè)不小于2B.都小于2
C.至少有一個(gè)不大于2D.都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對(duì)所有滿足1≤m<n≤5的自然數(shù)m,n,方程x2+C${\;}_{n}^{m}$y2=1所表示的不同橢圓的個(gè)數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)):曲線C的極坐標(biāo)方程為:ρ=2cosθ
(1)求直線l和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的距離的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.觀察下列等式:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根據(jù)上述規(guī)律,第n個(gè)等式為:13+23+33+…+n3=(1+2+3+…+n)2=$\frac{{n}^{2}•(n+1)^{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=m•9x-3x,若存在非零實(shí)數(shù)x0,使得f(-x0)=f(x0)成立,則實(shí)數(shù)m的取值范圍是(  )
A.m≥$\frac{1}{2}$B.m≥2C.0<m<2D.0<m<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=$\frac{1}{2},{a_{n+1}}=\frac{n+1}{2n}{a_n}$.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=n(2-Sn),n∈N*,若bn≤λ,n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
(3)設(shè)Cn=$\frac{{({2-{S_n}})}}{n(n+1)},n∈{N^*}$,Tn是數(shù)列{Cn}的前n項(xiàng)和,證明$\frac{3}{4}$≤Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在等比數(shù)列{an}中,已知a2=2,a5=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}是首項(xiàng)為1,公差為1的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A,B為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右頂點(diǎn),P為橢圓上異于A,B的任意一點(diǎn),直線AP,BP分別交橢圓的直線l:x=4于點(diǎn)M,N,則$\overrightarrow{AM}$•$\overrightarrow{BN}$的值為( 。
A.$\sqrt{3}$B.3C.3$\sqrt{3}$D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案