分析 (1)由$\left\{\begin{array}{l}y=2x-4\\ y=x-1\end{array}\right.$得圓心C,可得圓C的方程,設(shè)出切線(xiàn)方程,運(yùn)用相切的條件d=r,解方程可得k,進(jìn)而得到切線(xiàn)方程;
(2)由切線(xiàn)方程和圓的方程聯(lián)立,可得切點(diǎn)的坐標(biāo),再由兩點(diǎn)的距離公式計(jì)算即可得到弦長(zhǎng).
解答 解:(1)由$\left\{\begin{array}{l}y=2x-4\\ y=x-1\end{array}\right.$得圓心C為(3,2),
∵圓C的半徑為1,
∴圓C的方程為:(x-3)2+(y-2)2=1,
顯然切線(xiàn)的斜率一定存在,
設(shè)所求圓C的切線(xiàn)方程為y=kx+3,
∴$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$=1,
∴|3k+1|=$\sqrt{{k}^{2}+1}$,
∴k=0或k=-$\frac{3}{4}$,
∴圓C的切線(xiàn)方程為:y=3或者y=-$\frac{3}{4}$x+3,
即y=3或3x+4y-12=0;
(2)由(1)知$\left\{{\begin{array}{l}{y=3}\\{{{(x-3)}^2}+{{(y-2)}^2}=1}\end{array}}\right.∴\left\{{\begin{array}{l}{x=3}\\{y=1}\end{array}}\right.∴E(3,3)$;
∵$直線(xiàn)FC⊥AF∴{k_{FC}}=\frac{4}{3}∴FC:y=\frac{4}{3}x-2$,
∵$\left\{\begin{array}{l}{3x+4y-12=0}\\{y=\frac{4}{3}x-2}\end{array}\right.$,∴$\left\{\begin{array}{l}{x=\frac{12}{5}}\\{y=\frac{6}{5}}\end{array}\right.$,即F($\frac{12}{5}$,$\frac{6}{5}$).
∴|EF|=$\sqrt{(\frac{12}{5}-3)^{2}+(\frac{6}{5}-3)^{2}}$=$\frac{\sqrt{10}}{5}$.
點(diǎn)評(píng) 本題考查直線(xiàn)和圓相切的條件,考查切線(xiàn)方程和切點(diǎn)弦長(zhǎng)的求法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-2)2+(y-1)2=$\sqrt{5}$ | B. | (x-2)2+(y-1)2=5 | C. | (x+2)2+(y+1)2=$\sqrt{5}$ | D. | (x+2)2+(y+1)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 8 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0或-7 | B. | -7 | C. | 0 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | ||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2bn+1=bn+bn+2 | B. | bn+12=bn•bn+2 | C. | 2bn+1=bn•bn+2 | D. | bn+12=bn+bn+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com