分析 由雙曲線定義得方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示的曲線是以F1(-6,0),F(xiàn)2(6,0)為焦點(diǎn),以8為實(shí)軸的雙曲線的左支.
解答 解:方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示平面上到兩定點(diǎn)F2(6,0),F(xiàn)1(-6,0)的距離之差為8的點(diǎn)的集合,
∵|F1F2|=12>8,
∴方程$\sqrt{(x-6)^{2}+{y}^{2}}$-$\sqrt{(x+6)^{2}+{y}^{2}}$=8表示的曲線是以F1(-6,0),F(xiàn)2(6,0)為焦點(diǎn),以8為實(shí)軸的雙曲線的左支,
∴a=4,c=6,b2=36-16=20,
∴雙曲線方程為:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1,(x≤-4).
故答案為:$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{20}$=1,(x≤-4).
點(diǎn)評(píng) 本題考查雙曲線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線定義的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b>c>a | B. | a>b>c | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com