A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 根據(jù)題意,由正方體的結(jié)構特點,可得O是線段A1C的中點,過點O作任一平面α,設A1C與α所成的角為θ,分析可得點A1與C到平面α的距離相等,同理可得B與D1,A與C1,D與B1到平面α的距離相等,則可得集合A中的元素個數(shù)最多為4個,即可得答案.
解答 解:根據(jù)題意,如圖,點O為正方體對角線的交點,則O是線段A1C的中點,
過點O作任一平面α,設A1C與α所成的角為θ,
分析可得點A1與C到平面α的距離相等,均為$\frac{{A}_{1}C•sinθ}{2}$,
同理B與D1到平面α的距離相等,
A與C1到平面α的距離相等,
D與B1到平面α的距離相等,
則集合A中的元素個數(shù)最多為4個;
故選:B.
點評 本題考查正方體的幾何結(jié)構,注意正方體中心的性質(zhì),即體對角線的交點,從而分析得到體對角線的兩個端點到平面α的距離相等.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{13}{4}$ | B. | $\frac{5}{4}$ | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com