17.在三角形中有如下性質(zhì):①任意兩邊之和大于第三邊;②中位線長等于底邊長的一半;③若內(nèi)切圓半徑為r,周長為l,則面積S=$\frac{1}{2}$lr; ④三角形都有外接圓.
將其類比到空間則有:四面體中,①任意三個面的面積之和大于第四個面的面積;②過同一頂點的三條棱中點的截面面積是第四個面面積的$\frac{1}{4}$;③若內(nèi)切球半徑為R,表面積為s,則體積V=$\frac{1}{3}$sR.④四面體都有外接球.其中正確的類比結(jié)果是(  )
A.①②B.①②③C.①②④D.①②③④

分析 由二維到三維的類比推理要注意點的性質(zhì)往往推廣為線的性質(zhì),線的性質(zhì)往往推廣為面的性質(zhì).

解答 解:將其類比到空間則有:四面體中,
①在四面體ABCD中,設點A在底面上的射影為O,則三個側(cè)面的面積都大于在底面上的投影的面積,故三個側(cè)面的面積之和一定大于底面的面積,所以任意三個面的面積之和大于第四個面的面積,正確;
②由平面幾何中線的性質(zhì),類比推理空間幾何中面的性質(zhì),可得過四面體的交于同一頂點的三條棱的中點的平面面積等于第四個面面積的$\frac{1}{4}$,正確;
③利用分割法,若內(nèi)切球半徑為R,表面積為s,則體積V=$\frac{1}{3}$sR,正確;
④四面體都有外接球,正確.
故選:D.

點評 本題考查類比推理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.“指數(shù)函數(shù)y=ax(a>1)是增函數(shù),y=xα(α>1)是指數(shù)函數(shù),所以y=xα(α>1)是增函數(shù)”,在以上演繹推理中,下列說法正確的是( 。
A.推理完全正確B.大前提不正確C.小前提不正確D.推理形式不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若關(guān)于x的方程x2+ax-4≥0在區(qū)間[2,4]上恒成立,則實數(shù)a的取值范圍是[0,+∞)_.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若a<1且不等式f(x)≥2x-3對一切實數(shù)x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知m>$\frac{1}{2}$,n>1,則$\frac{{n}^{2}}{2m-1}$+$\frac{4{m}^{2}}{n-1}$的最小值為( 。
A.4B.7.5C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\sqrt{2}$sinωx(ω>0)相鄰兩個最值點的橫坐標之差的絕對值為$\frac{π}{2}$,其圖象上所有點向左平移$\frac{π}{8}$個單位得到g(x)的圖象,若x∈(0,$\frac{π}{4}$).則g(x)的值域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某房地產(chǎn)開發(fā)商為吸引更多的消費者購房,決定在一塊閑置的扇形空地中修建一個花園,如圖,已知扇形AOB的圓心角∠AOB=$\frac{π}{4}$,半徑為R,現(xiàn)欲修建的花園為平行四邊形OMNH,其中M,H分別在OA,OB上,N在AB上,設∠MON=θ,平行四邊形OMNH的面積為S.
1)將S表示為關(guān)于θ的函數(shù);
(2)求S的最大值及相應的θ值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.y=sin(ωx+$\frac{π}{6}$)(ω>0)在區(qū)間[-$\frac{3π}{4}$,$\frac{π}{2}$]上不單調(diào),則ω的取值范圍( 。
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,+∞)C.(0,$\frac{2}{3}$]D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設△ABC的內(nèi)角A、B、C的對邊分別是a,b,c,已知A=$\frac{π}{6}$,a=bcosC,則角C的大小是$\frac{π}{3}$(弧度)

查看答案和解析>>

同步練習冊答案