分析 (1)把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.
(2)利用絕對(duì)值三角不等式求得f(x)+g(x)的最小值為1,從而求得 b≤1.
解答 解:(1)當(dāng)a=1時(shí),不等式f(x)≥g(x)+1,即|2x+1|≥|x|+1,
可得 $\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1≥-x+1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-\frac{1}{2}≤x≤0}\\{2x+1≥-x+1}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>0}\\{2x+1≥x+1}\end{array}\right.$③.
解①求得x≤-2,解②求得x=0,解③求得x>0,
綜上可得,不等式的解集為{x|x≤-2,或x≥0}.
(2)當(dāng)a=2時(shí),f(x)+g(x)=|2x+1||2x|≥|2x+1-2x|=1,
若對(duì)一切x∈R,恒有f(x)+g(x)≥b成立,則1≥b,即 b≤1.
點(diǎn)評(píng) 本題主要考查絕對(duì)值三角不等式,絕對(duì)值不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1)是順序結(jié)構(gòu)(2)是條件結(jié)構(gòu)(3)是當(dāng)型循環(huán)結(jié)構(gòu)(4)是直到型循環(huán)結(jié)構(gòu) | |
B. | (1)是條件結(jié)構(gòu)(2)是順序結(jié)構(gòu)(3)是當(dāng)型循環(huán)結(jié)構(gòu)(4)是直到型循環(huán)結(jié)構(gòu) | |
C. | (1)是順序結(jié)構(gòu)(2)是條件結(jié)構(gòu)(3)是直到型循環(huán)結(jié)構(gòu)(4)是當(dāng)型循環(huán)結(jié)構(gòu) | |
D. | (1)是順序結(jié)構(gòu)(2)是當(dāng)型循環(huán)結(jié)構(gòu)(3)是條件結(jié)構(gòu)(4)是直到型循環(huán)結(jié)構(gòu) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0或$\overrightarrow$=0 | B. | 若λ$\overrightarrow{a}$=0,則λ=0或$\overrightarrow{a}$=$\overrightarrow{0}$ | ||
C. | 若$\overrightarrow{a}$2=$\overrightarrow$2,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$ | D. | 若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{{e}^{x}}$,e) | B. | (0,$\frac{1}{{e}^{x}}$) | C. | (0,$\frac{1}{2e}$) | D. | (0,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m≥1 | B. | $m≥\sqrt{2}$ | C. | m≥2 | D. | $m≥\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com