分析 作出可行域,由目標(biāo)函數(shù)變型得y=-2x+z,根據(jù)可行域找出最優(yōu)解即可.
解答 解:作出約束條件表示的可行域如圖所示:
由目標(biāo)函數(shù)z=2x+y得y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點B時,截距最大,即z最大.
解方程組$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-2=0}\end{array}\right.$得x=1,y=$\frac{1}{2}$,即B(1,$\frac{1}{2}$).
∴z的最大值為2×1+$\frac{1}{2}$=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點評 本題考查了簡單的線性規(guī)劃,作出可行域?qū)ふ易顑?yōu)解是解題關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①② | C. | ①③ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | φ | B. | 45°+φ | C. | 135°-φ | D. | φ-45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生 | A | B | C | D | E | F | G |
數(shù)學(xué)(x分) | 60 | 65 | 70 | 75 | 80 | 85 | 90 |
物理(y分) | 71 | 77 | 80 | 84 | 87 | 90 | 92 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com