11.比較大。海1)1.72.5<1.73;(2)1.70.3>0.93.1;log${\;}_{\sqrt{2}}$0.5<log${\;}_{\sqrt{3}}$$\sqrt{5}$.

分析 由題意和指數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的單調(diào)性,比較可得.

解答 解:(1)∵指數(shù)函數(shù)y=1.7x單調(diào)遞增,2.5<3,
∴1.72.5<1.73;
(2)由指數(shù)函數(shù)的單調(diào)性可得1.70.3>1,0<0.93.1<1,
∴1.70.3>0.93.1;
(3)由對(duì)數(shù)函數(shù)的單調(diào)性可得log${\;}_{\sqrt{2}}$0.5<0,log${\;}_{\sqrt{3}}$$\sqrt{5}$>0
∴l(xiāng)og${\;}_{\sqrt{2}}$0.5<log${\;}_{\sqrt{3}}$$\sqrt{5}$.
故答案為:<;>;<

點(diǎn)評(píng) 本題考查指數(shù)對(duì)數(shù)值大小的比較,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知各項(xiàng)都不相等的等差數(shù)列{an}的前六項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn
(2)若數(shù)列{bn}滿足bn=n(n+2),求數(shù)列{$\frac{1}{b_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若數(shù)a1,a2,a3,a4,a5的標(biāo)準(zhǔn)差為2,則數(shù)3a1-2,3a2-2,3a3-2,3a4-2,3a5-2的方差為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一束光線從點(diǎn)P(-1,1)出發(fā),經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上一點(diǎn)的最長(zhǎng)路程是( 。
A.3$\sqrt{2}$-1B.2$\sqrt{6}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=x3+x2-$\frac{1}{27}$,則關(guān)于x的方程3(f(x))2+2f(x)=0的根的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$+lg(x2-x-2)的定義域?yàn)閧x|-2≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)曲線y=x-$\frac{1}{x}$(x>0)上一點(diǎn)P(x0,y0)處的切線分別與x軸,y軸交于點(diǎn)A,B,O是坐標(biāo)原點(diǎn),若△OAB的面積為$\frac{1}{3}$,則x0=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow{m}$=(sinx,sin(x-$\frac{π}{2}$)),$\overrightarrow{n}$=(cos(x+$\frac{π}{6}$),cosx),函數(shù)f(x)=$\overrightarrow{m}$•($\overrightarrow{m}$+$\overrightarrow{n}$).
(1)求f(x)的值域;
(2)將函數(shù)f(x)的圖象向右平移a個(gè)單位(a>0),得到函數(shù)g(x)的圖象,若g(x)在x=$\frac{π}{2}$處取得最大值,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知sinα=$\frac{13}{14}$,sin(α-β)=$\frac{1}{7}$,0<β<α<$\frac{π}{2}$,求:
(1)sin(2α-β)的值;
 (2)β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案