分析 (1)利用正弦定理化簡已知條件,通過兩角和與差的三角函數(shù)化簡求解即可.
(2)通過余弦定理求出b,然后求解三角形的面積.
解答 解:(1)acosC+ccosA=2bcosA
由正弦定理可得:sinAcosC+sinCcosA=2sinBcosA….3’
所以sin(A+C)=2sinBcosA,即sinB=2sinBcosA
由sinB≠0$⇒cosA=\frac{1}{2}$….6’
由于0<A<π,故$A=\frac{π}{3}$….7’
(2)由余弦定理得,${({\sqrt{3}})^2}={2^2}+A{C^2}-2•2•AC•cos\frac{π}{3}$
所以AC=1….12’
故${S_{△ABC}}=\frac{1}{2}•2•1•sin\frac{π}{3}=\frac{{\sqrt{3}}}{2}$….14’
點評 本題考查正弦定理與余弦定理的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,-1) | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{5π}{3}$ | D. | $\frac{11π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -11 | B. | -7 | C. | 5 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com