8.已知角α的終邊與以坐標(biāo)原點(diǎn)為圓心,以1為半徑的圓交于點(diǎn)P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),則角α的最小正值為( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{11π}{6}$

分析 直接利用三角函數(shù)的定義,求解即可.

解答 解:角α的終邊與以坐標(biāo)原點(diǎn)為圓心,以1為半徑的圓交于點(diǎn)P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),
即($\frac{\sqrt{3}}{2}$,$-\frac{1}{2}$),對應(yīng)點(diǎn)為(cos$\frac{11π}{6}$,sin$\frac{11π}{6}$).
角α的最小正值為:$\frac{11π}{6}$.
故選:D.

點(diǎn)評 本題考查任意角的三角函數(shù)的定義的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x∈R,x2-x+1>0”的否定是(  )
A.?x0∈R,x02-x0+1≤0B.?x0∈R,x02-x0+1≤0
C.?x0R,x02-x0+1≤0D.?x0∈R,x02-x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知(2x2+4x+3)6=a0+a1(x+1)2+a2(x+1)4+…+a6(x+1)12,則a0+a2+a4+a6的值為(  )
A.$\frac{{3}^{6}-1}{2}$B.$\frac{{3}^{6}+1}{2}$C.$\frac{{3}^{6}+2}{2}$D.$\frac{{3}^{6}-2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某中學(xué)采用系統(tǒng)抽樣的方法從該校高一年級全體800名學(xué)生中抽取50名學(xué)生進(jìn)行體能測試.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號,求得間隔數(shù)k=$\frac{800}{50}$=16.若從1~16中隨機(jī)抽取1個(gè)數(shù)的結(jié)果是抽到了7,則在編號為33~48的這16個(gè)學(xué)生中抽取的一名學(xué)生其編號應(yīng)該是39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,在復(fù)平面內(nèi),點(diǎn)A對應(yīng)的復(fù)數(shù)為z,則復(fù)數(shù)z2等于( 。
A.3-4iB.-3-4iC.-3+4iD.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{2+i}{3-i}$的實(shí)部與虛部之和為(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}}\right.$,則x+y-1的取值范圍是(  )
A.[-1,3]B.[0,4]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{sin2x}{cosx}$+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$),則其最小值為(  )
A.1B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案