8.若bn=$\frac{1}{{n}^{2}+2n}$,求Sn

分析 運(yùn)用$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),由裂項(xiàng)相消求和方法,化簡(jiǎn)整理即可得到所求.

解答 解:bn=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
則Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$$-\frac{1}{5}$+$\frac{1}{4}$-$\frac{1}{6}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$).

點(diǎn)評(píng) 本題考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=log${\;}_{\frac{1}{2}}$(-x2+2x)的單調(diào)遞增區(qū)間是 ( 。
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.二次函數(shù)f(x)的最小值為-2,且f(0)=f(2)=1,則f(3)=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知遞減等差數(shù)列{an}的前三項(xiàng)和為18,前三項(xiàng)的乘積為66,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)A為B的充分條件,C為B的充要條件,D是C的必要條件,則D是A的必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知A={x|2x2+x+m=0},B={x|2x2+nx+2=0},且A∩B={$\frac{1}{2}$},求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)全集U=Z,集合M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},給定下列關(guān)系式:①M(fèi)⊆P;②CuM=CuP;③CuM=P;④CuP=M.其中正確的式子有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.△ABC,∠A≥∠B≥∠C,角A,B,C對(duì)應(yīng)的邊a,b,c成等差數(shù)列,且a2+b2+c2=147,則b的取值范圍為($\sqrt{42}$,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$\overrightarrow{a}$與$\overrightarrow$的夾角是45°,則-2$\overrightarrow{a}$與3$\overrightarrow$的夾角是$\frac{3π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案