4.已知扇形的弧長(zhǎng)是6cm,面積是18cm2,則扇形的中心角的弧度數(shù)是1.

分析 先根據(jù)扇形面積公式S=$\frac{1}{2}$lr,求出r,再根據(jù)$α=\frac{l}{r}$求出α.

解答 解:設(shè)扇形的半徑為r,中心角為α,根據(jù)扇形面積公式S=$\frac{1}{2}$lr,得18=$\frac{1}{2}$×6×r,
∴r=6,
又扇形弧長(zhǎng)公式l=r•α,
∴$α=\frac{l}{r}$=$\frac{6}{6}$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查弧度制下扇形弧長(zhǎng)、面積公式.牢記公式是前提,準(zhǔn)確計(jì)算是保障,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC是等腰直角三角形.|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,
(1)求$\overrightarrow{AD}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
(2)若點(diǎn)M在線段BC上,求$\overrightarrow{AM}$•$\overrightarrow{MD}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.天氣預(yù)報(bào)說,在今后的三天中,每一天下雨的概率均為40%.用設(shè)計(jì)模擬試驗(yàn)的方法求這三天中恰有一天下雨的概率,利用計(jì)算器或計(jì)算機(jī)可以產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),我們用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,這樣可以體現(xiàn)下雨的概率是40%,因?yàn)槭侨,所以每三個(gè)隨機(jī)數(shù)作為一組,例如,產(chǎn)生了20組隨機(jī)數(shù):907,966,191,925,271,932,812,458,569,683,431,257,394,028,556,488,720,123,536,983,則得到三天中恰有一天下雨的概率近似為( 。
A.25%B.30%C.40%D.45%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,四邊形ABCD中,∠ABC=∠C=120°,AB=4,BC=CD=2,則該四邊形的面積是$5\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則φ的值為( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了迎接珠海作為全國(guó)文明城市的復(fù)查,愛衛(wèi)會(huì)隨機(jī)抽取了60位路人進(jìn)行問卷調(diào)查,調(diào)查項(xiàng)目是自己對(duì)珠海各方面衛(wèi)生情況的滿意度(假設(shè)被問卷的路人回答是客觀的),以分?jǐn)?shù)表示問卷結(jié)果,并統(tǒng)計(jì)他們的問卷分?jǐn)?shù),把其中不低于50分的分成五段[50,60),[60,70),…[90,100]后畫出如圖部分頻率分布直方圖,觀察圖形信息,回答下列問題:
(1)求出問卷調(diào)查分?jǐn)?shù)低于50分的被問卷人數(shù);
(2)估計(jì)全市市民滿意度在60分及以上的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.五一節(jié)期間,某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對(duì)應(yīng)的返劵金額見表.
例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的結(jié)果相互獨(dú)立,設(shè)ξ為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ=$\frac{1}{25}$,方差Dξ=$\frac{99}{2500}$,求n、p的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.
指針位置A區(qū)域B區(qū)域C區(qū)域
返券金額(單位:元)60300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.先后擲骰子兩次,都落在水平桌面上,記正面朝上的點(diǎn)數(shù)分別為x,y.設(shè)事件A:x+y為偶數(shù); 事件B:x,y至少有一個(gè)為偶數(shù)且x≠y.則P(B|A)=( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從甲、乙、丙、丁四人任選兩人參加問卷調(diào)查,則甲被選中的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案