【題目】非空有限集合是由若干個正實數(shù)組成,集合的元素個數(shù).對于任意,數(shù)中至少有一個屬于,稱集合好集”:否則,稱集合壞集”.

1)判斷好集”,還是壞集;

2)題設的有限集合,既有大于1的元素,又有小于1的元素,證明:集合壞集”.

【答案】(1)壞集好集”.(2)證明見解析

【解析】

1)根據(jù)好集壞集的定義進行判斷即可;

2)利用小于的所有元素中的最小元素以及大于的所有元素中的最小元素,根據(jù)定義以及指數(shù)函數(shù)的單調(diào)性進行證明即可.

1壞集;

中任意兩個元素,滿足且數(shù)中至少有一個屬于,好集”.

2)若中小于1的元素中的最小元素,中大于1的元素中的最小元素,

則由指數(shù)函數(shù)的單調(diào)性可得:,從而,

∴集合壞集”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩鐵路線垂直相交于站,若已知千米,甲火車從站出發(fā),沿方向以千米小時的速度行駛,同時乙火車從站出發(fā),沿方向,以千米小時的速度行駛,至站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長忽略不計).

1)求甲、乙兩車的最近距離(用含的式子表示);

2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時所用時間為小時,問為何值時最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點務極點,軸正半軸為極軸建立極坐標系,曲線,

(1)求曲線,的直角坐標方程;

(2)曲線的交點為,,求以為直徑的圓與軸的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于,兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:,且為正項等比數(shù)列,,.

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足,為數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關的手機APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下.

(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調(diào)研,求甲商家被抽到的概率;

(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達時間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上任意一點,的最小值為,且該橢圓的離心率為.

1)求橢圓的方程;

2)若是橢圓上不同的兩點,且,若,試問直線是否經(jīng)過一個定點?若經(jīng)過定點,求出該定點的坐標;若不經(jīng)過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與直線交于兩點,不與軸垂直,圓.

(1)若點在橢圓上,點在圓上,求的最大值;

(2)若過線段的中點且垂直于的直線過點,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,其離心率為

(1)求橢圓的方程;

(2)若不經(jīng)過點的直線與橢圓相交于兩點,且,證明:直線經(jīng)過定點.

查看答案和解析>>

同步練習冊答案